Skip to main content

Abstract

The full potential of diatom microfossils in archeology has yet to be realized. Here were present a review of the use of diatoms in archeological settings. Included in this, we explain what diatoms are, the important components of their morphology, how they can be recovered from a range of materials, and how to distinguish these microfossils from other siliceous fossils with which they might be confused. We discuss their ability to provide robust environmental information from sites within and adjacent to archeological sites, along with specific examples from case studies that have used diatoms. We also recommend ways to avoid potential interpretive biases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, N. J. (2000). Miniview: Diatoms, temperature and climatic change. European Journal of Phycology, 35(4), 307–314. https://doi.org/10.1080/09670260010001735911.

    Article  Google Scholar 

  • Armbrust, E. V. (2009). The life of diatoms in the world’s oceans. Nature, 459(7244), 185–192. https://doi.org/10.1038/nature08057.

    Article  Google Scholar 

  • Ashley, G. M., Tactikos, J. C., & Owen, R. B. (2009). Hominin use of springs and wetlands: Paleoclimate and archaeological records from Olduvai Gorge (~1.79–1.74 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology, 272(1–2), 1–16. https://doi.org/10.1016/j.palaeo.2008.10.016.

    Article  Google Scholar 

  • Ball, T., Chandler-Ezell, K., Dickau, R., Duncan, N., Hart, T. C., Iriarte, J., et al. (2016). Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. Journal of Archaeological Science, 68, 32–45.

    Article  Google Scholar 

  • Barker, P. A. (1992). Differential diatom dissolution in Late Quaternary sediments from Lake Manyara, Tanzania: An experimental approach. Journal of Paleolimnology, 7, 235–251.

    Article  Google Scholar 

  • Barker, P. A., Gasse, F., Fontes, J.-C., & Druart, J.-C. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39(1), 99–110.

    Article  Google Scholar 

  • Bar-Yosef, O., Vandermeersch, B., Arensburg, B., Belfer-Cohen, A., Goldberg, P., Laville, H., et al. (1992). The excavations in Kebara cave, Mt. Carmel. Current Anthropology, 33(5), 497–550. https://doi.org/10.1086/204112.

    Article  Google Scholar 

  • Bathurst, R. R., Zori, D., & Byock, J. (2010). Diatoms as bioindicators of site use: Locating turf structures from the Viking Age. Journal of Archaeological Science, 37(11), 2920–2928. https://doi.org/10.1016/j.jas.2010.07.002.

    Article  Google Scholar 

  • Battarbee, R. W. (1988). Use of diatoms in archeology: A review. Journal of Archaeological Science, 15, 621–644.

    Article  Google Scholar 

  • Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. G., Bennion, H., Carvalho, L., & Juggins, S. (2001). Diatoms. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking environmental change using lake sediments (Terrestrial, algal, and siliceous indicators) (Vol. 3, pp. 155–202). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Battarbee, R. W., Mackay, A. W., Jewson, D. H., Ryves, D. B., & Sturm, M. (2005). Differential dissolution of Lake Baikal diatoms: Correction factors and implications for palaeoclimatic reconstruction. Global and Planetary Change, 46, 75–86. https://doi.org/10.1016/j.gloplacha.2004.11.007.

    Article  Google Scholar 

  • Beneš, J., Kaštovský, J., Kočárová, R., Kočár, P., Kubečková, K., Pokorný, P., & Starec, P. (2002). Archaeobotany of the Old Prague Town defence system, Czech Republic: Archaeology, macro-remains, pollen, and diatoms. Vegetation History and Archaeobotany, 11(1–2), 107–119. https://doi.org/10.1007/s003340200012.

    Article  Google Scholar 

  • Bichet, V., Gauthier, E., Massa, C., Perren, B., Richard, H., Petit, C., & Mathieu, O. (2013). The history and impacts of farming activities in South Greenland: An insight from lake deposits. Polar Record, 49(3), 210–220. https://doi.org/10.1017/S0032247412000587.

    Article  Google Scholar 

  • Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., & ter Braak, C. J. F. (1990). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B, 327(1240), 263–278.

    Article  Google Scholar 

  • Blinn, D. W., Hevly, R. H., & Davis, O. K. (1994). Continuous Holocene record of diatom stratigraphy, paleohydrology, and anthropogenic activity in a spring-mound in the southwestern United States. Quaternary Research, 42, 197–205.

    Article  Google Scholar 

  • Bonny, S., & Jones, B. (2003). Microbes and mineral precipitation, Miette Hot Springs, Jasper National Park, Alberta, Canada. Canadian Journal of Earth Sciences, 40(11), 1483–1500. https://doi.org/10.1139/e03-060.

    Article  Google Scholar 

  • Cameron, N. G. (2013). Diatom methods | Use in archeology. In S. A. Elias (Ed.), Encyclopedia of quaternary science (2nd ed., pp. 516–521). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Campisano, C. J., Cohen, A. S., Arrowsmith, J. R., Asrat, A., Behresmeyer, A. K., Brown, E. T., et al. (2017). The hominin sites and Paleolakes Drilling Project: High-resolution Paleoclimate records from the East African rift system and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology, 2017, 1–43. https://doi.org/10.4207/PA.2017.ART104.

    Article  Google Scholar 

  • Cennamo, P., Marzano, C., Ciniglia, C., Pinto, G., Cappelletti, P., Caputo, P., & Pollio, A. (2012). A survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) archaeological district. Journal of Cave and Karst Studies, 74(3), 243–250. https://doi.org/10.4311/2011jcks0194.

  • Charles, D. F., Dixit, S., Cumming, B. F., & Smol, J. P. (1991). Variability in diatom and chrysophyte assemblages and inferred pH: Paleolimnological studies of Big Moose Lake, New York, USA. Journal of Paleolimnology, 5, 267–284.

    Article  Google Scholar 

  • Chicoine, D., Clement, B., & Cummings, L. S. (2015). Plants and diets in early horibon Peru: Macrofloral remains from rehydrated fecal samples at Caylan. Andean Past, 13, 1–7.

    Google Scholar 

  • Clavero, E., Hernández-Mariné, M., Grimalt, J. O., & Garcia-pichel, F. (2000). Salinity tolerance of diatoms from thalassic hypersaline environments. Journal of Phycology, 36(6), 1021–1034.

    Article  Google Scholar 

  • Cohen, A. S., Stone, J. R., Beuning, K. R. M., Park, L. E., Reinthal, P. N., Dettman, D., et al. (2007). Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proceedings of the National Academy of Sciences, 104(42), 16422–16427.

    Article  Google Scholar 

  • Cohn, S. A., & Weitzell, R. E. (1996). Ecological considerations of diatom cell motility. I. Characterization of motility and adhesion in four diatom species. Journal of Phycology, 32(6), 928–939. https://doi.org/10.1111/j.0022-3646.1996.00928.x.

    Article  Google Scholar 

  • Cole, S. C., Atwater, B. F., McCutcheon, P. T., Stein, J. K., & Hemphill-Haley, E. (1996). Earthquake-induced burial of archaeological sites along the southern Washington coast about A.D. 1700. Geoarchaeology, 11(2), 165–177. https://doi.org/10.1002/(SICI)1520-6548(199603)11:2<165::AID-GEA4>3.0.CO;2-3.

    Article  Google Scholar 

  • Cremer, H., & Wagner, B. (2003). The diatom flora in the ultra-oligotrophic Lake El’gygytgyn, Chukotka. Polar Biology, 26(February 2003), 105–114. https://doi.org/10.1007/s00300-002-0445-0.

    Article  Google Scholar 

  • DeNicola, D. M. (2000). A review of diatoms found in highly acidic environments. Hydrobiologia, 433, 111–122. https://doi.org/10.1023/A:1004066620172.

    Article  Google Scholar 

  • Denys, L. (1992). On the significance of marine diatoms in freshwater deposits at archaeological sites. Diatom Research, 7(1), 195–197.

    Google Scholar 

  • Douglas, M. S. V., Smol, J. P., Savelle, J. M., & Blais, J. M. (2004). Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proceedings of the National Academy of Sciences, 101(6), 1613–1617. https://doi.org/10.1073/pnas.0307570100.

    Article  Google Scholar 

  • Duff, K. E., Zeeb, B. A., & Smol, J. P. (1995). Atlas of Chrysophcean cysts. Boston, MA: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Ekdahl, E. J., Teranes, J. L., Guilderson, T. P., Turton, C. L., McAndrews, J. H., Wittkop, C. A., & Stoermer, E. F. (2004). Prehistorical record of cultural eutrophication from Crawford Lake, Canada. Geology, 32(9), 745–748.

    Article  Google Scholar 

  • Ekdahl, E. J., Teranes, J. L., Wittkop, C. A., Stoermer, E. F., Reavie, E. D., & Smol, J. P. (2007). Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake, Ontario, Canada. Journal of Paleolimnology, 37(2), 233–246. https://doi.org/10.1007/s10933-006-9016-7.

    Article  Google Scholar 

  • Falasco, E., Ector, L., Isaia, M., Wetzel, C. E., Hoffmann, L., & Bona, F. (2014). Diatom flora in subterranean ecosystems: A review. International Journal of Speleology, 43(3), 231–251. https://doi.org/10.5038/1827-806X.43.3.1.

    Article  Google Scholar 

  • Florin, S. (1948). Kustförskjutningen och bebyggelseutvecklingen i östra Mellansverige under senkvartär tid. II. De baltiska strandbildningarna och stenåldersboplatsen vid Dammstugan nära Katrineholm. Geologiska Föreningen Förhalndlingar, 70, 17–196.

    Article  Google Scholar 

  • Flower, R. J. (2017). A personal perspective on four decades of paleolimnology and environmental change research. Journal of Paleolimnology, 57(2), 109–125. https://doi.org/10.1007/s10933-016-9898-y.

    Article  Google Scholar 

  • Frankovich, T. A., Sullivan, M. J., & Stacy, N. I. (2015). Three new species of Tursiocola (Bacillariophyta) from the skin of the west Indian manatee (Trichechus manatus). Phytotaxa, 204(1), 33–48.

    Article  Google Scholar 

  • Fritz, S. C. (1989). Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, U.K. Journal of Ecology, 77(1), 182–202.

    Article  Google Scholar 

  • Fritz, S. C. (1990). Twentieth-century salinity and water-level fluctuations in Devils Lake, North Dakota: Test of a diatom-based transfer function. Limnology and Oceanography, 35(8), 1771–1781. https://doi.org/10.4319/lo.1990.35.8.1771.

    Article  Google Scholar 

  • Fritz, S. C. (1996). Paleolimnological records of climatic change in North America. Limnology and Oceanography, 41(5), 882–889.

    Article  Google Scholar 

  • García-Rodríguez, F. (2006). Inferring paleosalinity trends using the chrysophyte cyst to diatom ratio in coastal shallow temperate/subtropical lagoons influenced by sea level changes. Journal of Paleolimnology, 36(2), 165–173. https://doi.org/10.1007/s10933-006-0011-9.

    Article  Google Scholar 

  • Gasse, F. (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews, 19, 189–211.

    Article  Google Scholar 

  • Gasse, F., & Street, F. A. (1978). Late Quaternary lake-level fluctuations and environments of the Northern Rift Valley and Afar region (Ethiopia and Djibouti). Palaeogeography, Palaeoclimatology, Palaeoecology, 24, 279–325.

    Article  Google Scholar 

  • Gibson, A. M. (1986). Diatom analysis of clays and Late Neolithic pottery from the Milfield Basin, Northumberland. Proceedings of the Prehistoric Society, 52, 89–103.

    Article  Google Scholar 

  • Gillson, L., Ekblom, A., History, S. V., March, N., Gillson, L., & Ekblom, A. (2018). Untangling anthropogenic and climatic influence on riverine forest in the Kruger National Park, South Africa. Geology, 18(2), 171–185.

    Google Scholar 

  • Godbold, S., & Turner, R. C. (1993). Second Severn crossing archaeological response: Phase 1: The intertidal zone in Wales. Brentwood: Westbury Press.

    Google Scholar 

  • Golyeva, A. A. (2012). The study of biogenic silica in animal dung deposits from the Moscow Kremlin, Russia. Boletín de la Sociedad Geológica Mexicana, 64(2), 171–176.

    Article  Google Scholar 

  • Guerreiro, R. L., McGlue, M. M., Stone, J. R., Bergier, I., Parolin, M., da Silva Caminha, S. A. F., et al. (2018). Paleoecology explains Holocene chemical changes in lakes of the Nhecolândia (Pantanal-Brazil). Hydrobiologia, 815, 1–19. https://doi.org/10.1007/s10750-017-3429-3.

    Article  Google Scholar 

  • Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x.

    Article  Google Scholar 

  • Håkansson, H., & Hulthén, B. (1986). On the dissolution of pottery for diatom studies. Norwegian Archaeological Review, 19(1), 34–38. https://doi.org/10.1080/00293652.1986.9965428.

    Article  Google Scholar 

  • Håkansson, H., & Hulthén, B. (1988). Identification of diatoms in neolithic pottery. Diatom Research, 3(1), 39–45.

    Article  Google Scholar 

  • Harris-Parks, E. (2016). The micromorphology of Younger Dryas-aged black mats from Nevada, Arizona, Texas and New Mexico. Quaternary Research, 85, 94–106.

    Article  Google Scholar 

  • Haworth, E. Y. (1985). The highly nervous system of the English lakes; aquatic ecosystem sensitivity to external changes, as demonstrated by diatoms. Annual Report of the Freshwater Biological Association, 53, 60–79.

    Google Scholar 

  • Hemphill-Haley, E. (1995). Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington. Geological Society of America Bulletin, 107(3), 367–378. https://doi.org/10.1130/0016-7606(1995)107<0367:DEFEIS>2.3.CO;2.

    Article  Google Scholar 

  • Hill, T. C. B., Hill, G. E., Brunning, R., Banerjea, R. Y., Fyfe, R. M., Hogg, A. G., et al. (2019). Glastonbury lake village revisited: A multi-proxy Palaeoenvironmental investigation of an iron age wetland settlement. Journal of Wetland Archaeology, 18, 2971. https://doi.org/10.1080/14732971.2018.1560064.

    Article  Google Scholar 

  • Hooper, J. N. A., & van Soest, R. W. M. (2002). In J. N. A. Hooper & R. W. M. van Soest (Eds.), Systema Porifera: A guide to the classification of sponges. New York: Kluwer Academic Publishers. Volume 1. Boston, MA: Springer US.

    Google Scholar 

  • Horrocks, M., Irwin, G. J., McGlone, M. S., Nichol, S. L., & Williams, L. J. (2003). Pollen, Phytoliths and diatoms in prehistoric coprolites from Kohika, Bay of Plenty, New Zealand. Journal of Archaeological Science, 30(1), 13–20.

    Article  Google Scholar 

  • Horrocks, M., Nichol, S. L., D’Costa, D. M., Augustinus, P., Jacobi, T., Shane, P. A., & Middleton, A. (2007). A Late Quaternary record of natural change and human impact from Rangihoua Bay, Bay of Islands, Northern New Zealand. Journal of Coastal Research, 233, 592–604. https://doi.org/10.2112/04-0182.1.

    Article  Google Scholar 

  • Ishii, K.-I., & Kamikawa, R. (2017). Growth characterization of non-photosynthetic diatoms, Nitzschia spp., inhabiting estuarine mangrove forests of Ishigaki Island, Japan. Plankton and Benthos Research, 12(3), 164–170. https://doi.org/10.3800/pbr.12.164.

    Article  Google Scholar 

  • Jackson, L. J., Stone, J. R., Cohen, A. S., & Yost, C. L. (2015). High-resolution paleoecological records from Lake Malawi show no significant cooling associated with the Mount Toba supereruption at ca. 75 ka. Geology, 43(9), 823–826. https://doi.org/10.1130/G36917.1.

    Article  Google Scholar 

  • Jansma, M. J. (1978). Diatomeenanlysen einiger Graben-profile in der römischen Siedlung von Rijswijk, Z.H. In J. H. Bloemers (Ed.), “De Bult”, Eine Siedlung der Cananefaten (Nederlandse Oudheden) (Vol. 8, pp. 447–451). Amersfoort: Rijksdienst voor het Oudheidkundig Bodemonderzoek.

    Google Scholar 

  • Jansma, M. J. (1982). Diatom analysis from some prehistoric sites in the coastal area of the Netherlands. Acta Geologica Academiae Scientarium Hungaricae, 25, 229–236.

    Google Scholar 

  • Jansma, M. J. (1990). Diatoms from Neolithic excavation on the former island of Schokland, Ijselmeerpolders, the Netherlands. Diatom Research, 5(2), 301–309.

    Article  Google Scholar 

  • Jensen, K. G., Kuijpers, A., Koç, N., & Heinemeier, J. (2004). Diatom evidence of hydrographic changes and ice conditions in Igaliku Fjord, South Greenland, during the past 1500 years. Holocene, 14(2), 152–164. https://doi.org/10.1191/0959683604hl698rp.

    Article  Google Scholar 

  • Johansen, J. R., Rushforth, S. R., & Brotherson, J. D. (1981). Subaerial algae of Navajo National Monument, Arizona. Great Basin Naturalist, 41, 433–439.

    Google Scholar 

  • Jones, B., & Renaut, R. W. (2006). Growth of siliceous spicules in acidic hot springs, Waiotapu Geothermal Area, North Island, New Zealand. Palaios, 21, 406–423.

    Article  Google Scholar 

  • Juggins, S. (1992). Diatoms in the Thames Estuary, England Ecology, palaeoecology, and salinity transfer function (Bibliothec.). Berlin: J. Cramer.

    Google Scholar 

  • Juggins, S., & Cameron, N. G. (2010). Diatoms and archeology. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: Applications for the environmental and earth sciences (2nd ed., pp. 514–522). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Jüttner, I., Cox, E. J., & Ormerod, S. (2000). New or poorly known diatoms from Himalayan streams. Diatom Research, 15, 237–262.

    Article  Google Scholar 

  • Jüttner, I., Bennion, H., Carter, C., Cox, E. J., Ector, L., Flower, R. J., et al. (2018). Freshwater diatom flora of Britain and Ireland. Amgueddfa Cymru - National Museum Wales. Retrieved March 29, 2018, from https://naturalhistory.museumwales.ac.uk/diatoms/Home.php.

  • Kahlert, M., & Neumann, D. (1997). Early development of freshwater sponges under the influence of nitrite and pH. Archiv für Hydrobiologie, 137, 69–81.

    Article  Google Scholar 

  • Keevill, G. (2004). The Tower of London moat. Archaeological excavations 1995–1999 (Historic Royal Palaces monograph). Oxford: Oxford Archaeology.

    Google Scholar 

  • Kharkongor, D., & Ramanujam, P. (2014). Diversity and species composition of subaerial algal communities in forested areas of Meghalaya, India. International Journal of Biodiversity, 2014, 1–10. https://doi.org/10.1155/2014/456202.

    Article  Google Scholar 

  • Killick, S. A., Blanchon, D. J., & Large, M. F. (2014). Algal communities in phytotelmata: A comparison of native Collospermum and exotic bromeliads (Monocotyledonae) in New Zealand. Telopea, 17(October), 303–310. https://doi.org/10.7751/telopea20147847.

    Article  Google Scholar 

  • King, D. J., Searcy, M. T., Yost, C. L., & Waller, K. (2017). Corn, beer, and marine resources at Casas Grandes, Mexico: An analysis of prehistoric diets using microfossils recovered from dental calculus. Journal of Archaeological Science: Reports, 16(October), 365–379. https://doi.org/10.1016/j.jasrep.2017.10.013.

    Article  Google Scholar 

  • Kingston, J. C., Lowe, R. L., Stoermer, E. F., & Ladewski, T. B. (1983). Spatial and temporal distribution of benthic diatoms in northern Lake Michigan. Ecology, 64(6), 1566–1580.

    Article  Google Scholar 

  • Kirkwood, A. E., & Henley, W. J. (2006). Algal community dynamics and halotolerance in a terrestrial, hypersaline environment. Journal of Phycology, 42(3), 537–547. https://doi.org/10.1111/j.1529-8817.2006.00227.x.

    Article  Google Scholar 

  • Kligmann, D. M., & Calderari, M. (2012). Diatoms and ceramic provenance: A cautionary tale. Archaeometry, 54(1), 129–143. https://doi.org/10.1111/j.1475-4754.2011.00609.x.

    Article  Google Scholar 

  • Kociolek, J. P., & Herbst, D. B. (1992). Taxonomy and distribution of benthic diatoms from mono Lake, California, U.S.A. Transactions of the American Microscopical Society, 111(4), 338. https://doi.org/10.2307/3226708.

    Article  Google Scholar 

  • Kociolek, J. P., & Spaulding, S. A. (2000). Freshwater diatom biogeography. Nova Hedwigia, 71(1–2), 223–241.

    Article  Google Scholar 

  • Kociolek, J. P., Spaulding, S. A., & Lowe, R. L. (2015a). Bacillariophyceae: The raphid diatoms. In J. D. Wehr, R. G. Sheath, & J. P. Kociolek (Eds.), Freshwater algae of North America: Ecology and classification (2nd ed., pp. 709–772). New York: Elsevier.

    Chapter  Google Scholar 

  • Kociolek, J. P., Theriot, E. C., Williams, D. M., Julius, M. L., Stoermer, E. F., & Kingston, J. C. (2015b). Centric and araphid diatoms. In J. D. Wehr, R. G. Sheath, & J. P. Kociolek (Eds.), Freshwater algae of North America: Ecology and classification (2nd ed., pp. 653–708). New York: Academic Press.

    Chapter  Google Scholar 

  • Konhauser, K. O., Jones, B., Phoenix, V. R., Ferris, G., & Renaut, R. W. (2004). The microbial role in hot spring silicification. Ambio, 33(8), 552–558.

    Article  Google Scholar 

  • Lee, J. J. (2011). Diatoms as endosymbionts. In J. Seckbach & J. P. Kociolek (Eds.), The diatom world. Cellular origin, life in extreme habitats and astrobiology (Vol. 19, pp. 437–464). Dordrecht: Springer.

    Google Scholar 

  • Ligowski, R., Godlewski, M., & Łukowski, A. (1992). Sea ice diatoms and ice edge planktonic diatoms at the northern limit of the Weddell Sea pack ice. Polar Biology, 5, 9–20.

    Google Scholar 

  • Lowe, R. L., Kociolek, J. P., & Van De Vijver, B. (2013). Two new Orthoseira species (Bacillariphyceae) from lava tubes on Ile Amsterdam and Big Island (Hawai’i). Phytotaxa, 21(4), 1–14.

    Google Scholar 

  • Mann, D. G. (2011). Size and sex. In J. Seckbach & J. P. Kociolek (Eds.), The diatom world. Cellular origin, life in extreme habitats and astrobiology (Vol. 19, pp. 145–166). Dordrecht: Springer.

    Google Scholar 

  • Mannion, A. M. (1987). Fossil diatoms and their significance in archaeological research. Oxford Journal of Archaeology, 6(2), 131–147. https://doi.org/10.1111/j.1468-0092.1987.tb00149.x.

    Article  Google Scholar 

  • Matiskainen, H., & Alhonen, P. (1984). Diatoms as indicators of provenance in Finnish sub-Neolithic pottery. Journal of Archaeological Science, 11, 147–157.

    Article  Google Scholar 

  • Mcmillan, M., & Rushforth, S. R. (1985). The diatom flora of a steam vent of Kilauea Crater, Island of Hawaii. Pacific Science, 39(3), 294–301.

    Google Scholar 

  • Meltzer, D. J. (1991). Altithermal archaeology and paleoecology at Mustang Springs, on the southern High Plains of Texas. American Antiquity, 56(2), 236–267. https://doi.org/10.2307/281417.

    Article  Google Scholar 

  • Metcalfe, S., & Davies, S. (2007). Deciphering recent climate change in central Mexican lake records. Climatic Change, 83(1–2), 169–186. https://doi.org/10.1007/s10584-006-9152-0.

    Article  Google Scholar 

  • Michel, T. J., Saros, J. E., Interlandi, S. J., & Wolfe, A. P. (2006). Resource requirements of four freshwater diatom taxa determined by in situ growth bioassays using natural populations from alpine lakes. Hydrobiologia, 568(1), 235–243. https://doi.org/10.1007/s10750-006-0109-0.

    Article  Google Scholar 

  • Michelutti, N., Holtham, A. J., Douglas, M. S. V., & Smol, J. P. (2003). Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology, 39, 465–480.

    Article  Google Scholar 

  • Miller, U., & Florin, S. (1989). Diatom analysis. Introduction to methods and applications. In T. Hackens & U. Miller (Eds.), Geology and palaeoecology for archeologists (PACT) (Vol. 24, pp. 133–157).

    Google Scholar 

  • Miller, U., Robertsson, A., Karlsson, S., & Risberg, J. A. N. (2004). Half a century of interdisciplinary studies on the development of the natural and cultural landscape in the Stockholm region. Acta Palaeobotanica, 44(2), 287–298.

    Google Scholar 

  • Milne, G., Battarbee, R. W., Straker, V., & Yule, B. (1983). The river Thames in London in the mid 1st century AD. Transactions of the London and Middlesex Archaeological Society, 34, 19–30.

    Google Scholar 

  • Nautiyal, P., Nautiyal, R., Kala, K., & Verma, J. (2004). Taxonomic richness in the diatom flora of Himalayan streams (Garhwal, India). Diatom, 20(December), 123–132.

    Google Scholar 

  • Neely, J. A., Caran, S. C., Winsborough, B. M., Sorensen, F. R., & Valastro, S. J. (1995). Early Holocene hand-dug water well in the Tehuacan valley of Puebla, Mexico. Current Research in the Pleistocene, 12(January 1995), 38–40.

    Google Scholar 

  • Nunez, M., & Paabo, K. (1990). Diatom analysis. Norwegian Archaeological Review, 23(1–2), 128–130.

    Article  Google Scholar 

  • O’Brien, C., Selby, K., Ruiz, Z., Brown, A., Dinnin, M., Caseldine, C., et al. (2005). A sediment-based multiproxy palaeoecological approach to the environmental archaeology of lake dwellings (crannogs), Central Ireland. The Holocene, 15(5), 707–719. https://doi.org/10.1191/0959683605hl845rp.

    Article  Google Scholar 

  • Ognjanova-Rumenova, N. (2008). Palaeoenvironment and archaeology: The use of diatom analysis in archaeology. In Geoarchaeology and archaeomineralogy. Proceedings of the International Conference, (October) (pp. 291–294).

    Google Scholar 

  • Ognjanova-Rumenova, N., & Zaprjanova, D. (1998). Siliceous microfossil stratigraphy of sediment profile ‘F’ connected with archaeological excavations in coastal wetlands in the Bay of Sozopol (Bulgarian Black Sea coast). Part 2: Palaeoenvironmental interpretations. Phytologia Balcanica, 4(1–2), 65–80.

    Google Scholar 

  • Owen, R. B., Renaut, R. W., Hover, V. C., Ashley, G. M., & Muasya, A. M. (2004). Swamps, springs and diatoms: Wetlands of the semi-arid Bogoria-Baringo Rift, Kenya. Hydrobiologia, 518, 59–78.

    Article  Google Scholar 

  • Owen, R. B., Potts, R., Behrensmeyer, A., & Ditchfield, P. (2008a). Diatomaceous sediments and environmental change in the Pleistocene Olorgesailie formation, southern Kenya Rift Valley. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(1–2), 17–37. https://doi.org/10.1016/j.palaeo.2008.06.021.

    Article  Google Scholar 

  • Owen, R. B., Renaut, R. W., & Jones, B. (2008b). Geothermal diatoms: A comparative study of floras in hot spring systems of Iceland, New Zealand, and Kenya. Hydrobiologia, 610(1), 175–192. https://doi.org/10.1007/s10750-008-9432-y.

    Article  Google Scholar 

  • Owen, R. B., Lee, R. K. L., & Renaut, R. (2012). Early Pleistocene lacustrine sedimentation and diatom stratigraphy at Munya Wa Gicheru, southern Kenya Rift Valley. Palaeogeography, Palaeoclimatology, Palaeoecology, 331–332, 60–74. https://doi.org/10.1016/j.palaeo.2012.02.033.

    Article  Google Scholar 

  • Patrick, R. M., & Reimer, C. W. (1966). The diatoms of the United States exclusive of Alaska and Hawaii. Monographs of the Academy of Natural Sciences of Philadelphia, 1(13), 1–688.

    Google Scholar 

  • Peabody, A. J., & Cameron, N. G. (2010). Forensic science and diatoms. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: Applications for the environmental and earth sciences (2nd ed., pp. 534–539). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Lanham, MD: AltaMira Press.

    Google Scholar 

  • Pla, S., & Catalan, J. (2005). Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Climate Dynamics, 24, 263–278.

    Article  Google Scholar 

  • Potapova, M. G., & Charles, D. F. (2002). Benthic diatoms in USA rivers: Distributions along spatial and environmental gradients. Journal of Biogeography, 29, 167–187.

    Article  Google Scholar 

  • Potapova, M. G., Charles, D. F., Ponader, K. C., & Winter, D. M. (2004). Quantifying species indicator values for trophic diatom indices: A comparison of approaches. Hydrobiologia, 517(1–3), 25–41. https://doi.org/10.1023/B:HYDR.0000027335.73651.ea.

    Article  Google Scholar 

  • Quinn, S. P. (2008). The occurrence and research potential of microfossils in inorganic archaeological materials. Geoarchaeology, 23(2), 275–291. https://doi.org/10.1002/GEA.

    Article  Google Scholar 

  • Radini, A., Nikita, E., Buckley, S., Copeland, L., & Hardy, K. (2017). Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus. American Journal of Physical Anthropology, 162(November 2016), 71–83. https://doi.org/10.1002/ajpa.23147.

    Article  Google Scholar 

  • Risberg, J., Bengtsson, L., Kihlstedt, B., Lidstrom Holmberg, C., Olausson, M., Olsson, E., & Tingvall, C. (2002). Siliceous microfossils, especially phytoliths, as recorded in five prehistoric sites in Eastern Middle Sweden. Journal of Nordic Archaeological Science, 13, 11–26.

    Google Scholar 

  • Robbins, L. H., Murphy, M. L., Stevens, N. J., Brook, G. A., Ivester, A. H., Haberyan, K. A., et al. (1996). Paleoenvironment and archaeology of Drotsky’s cave: Western Kalahari Desert, Botswana. Journal of Archaeological Science, 23(1), 7–22. https://doi.org/10.1006/jasc.1996.0002.

    Article  Google Scholar 

  • Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms: Biology & morphology of the genera. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rühland, K. M., Karst, T., Paterson, A., Gregory-Eaves, R., Smol, J. P., & Cumming, B. F. (1999, September). Standard sediment sample preparation methods for siliceous microfossils (diatoms and chrysophyte scales and cysts). In Lab manual. Kingston, ON: PEARL, Queen’s University.

    Google Scholar 

  • Ryves, D. B., Juggins, S., Fritz, S. C., & Battarbee, R. W. (2001). Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 99–113.

    Article  Google Scholar 

  • Ryves, D. B., McGowan, S., & Anderson, N. J. (2002). Development and evaluation of a diatom-conductivity model from lakes in West Greenland. Freshwater Biology, 47, 995–1014.

    Article  Google Scholar 

  • Šálková, T., Bezděk, A., Březinová, H., Farkašová, K., Houfková, P., Chvojka, O., et al. (2015). Bioarchaeological reconstruction of the funeral rite—Case study based on organic material from the Hallstatt Period tumulus at the site Zahrádka (South Bohemia, Czech Republic). Památky Archeologické, 106(January 2016), 95–135.

    Google Scholar 

  • Saros, J. E., Stone, J. R., Pederson, G. T., Slemmons, K. E. H., Spanbauer, T. L., Schliep, A., et al. (2012). Climate-induced changes in lake ecosystem structure inferred from coupled neo- and paleo-ecological approaches. Ecology, 93(10), 2155–2164. Retrieved October 26, 2012, from http://www.esajournals.org/doi/abs/10.1890/11-2218.1.

    Article  Google Scholar 

  • Selby, K. A., & Brown, A. G. (2007). Holocene development and anthropogenic disturbance of a shallow lake system in Central Ireland recorded by diatoms. Journal of Paleolimnology, 38(3), 419–440. https://doi.org/10.1007/s10933-006-9081-y.

    Article  Google Scholar 

  • Serieyssol, K., Chatelard, S., & Cubizolle, H. (2010). Diatom fossils in mires: A protocol for extraction, preparation and analysis in palaeoenvironmental studies. Mires and Peat, 7(2008), 12-Article 12.

    Google Scholar 

  • Sherrod, B. L. (2001). Evidence for earthquake-induced subsidence about 1100 years ago in coastal marshes of southern Puget Sound, Washington. Geological Society of America Bulletin, 113(10), 1299–1311.

    Article  Google Scholar 

  • Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia, 45(4), 361–402. https://doi.org/10.2216/05-22.1.

    Article  Google Scholar 

  • Siver, P. A. (2015). Synurophyte algae. In J. D. Wehr, R. G. Sheath, & J. P. Kociolek (Eds.), Freshwater algae of North America: Ecology and classification (2nd ed., pp. 607–651). New York: Elsevier.

    Chapter  Google Scholar 

  • Siver, P. A., & Wolfe, A. P. (2007). Eunotia spp. (Bacillariophyceae) from Middle Eocene lake sediments and comments on the origin of the diatom raphe. Canadian Journal of Botany, 85(1), 83–90. https://doi.org/10.1139/b06-143.

    Article  Google Scholar 

  • Smol, J. P., & Stoermer, E. F. (2010). Applications and uses of diatoms: Prologue. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: Applications for the environmental and earth sciences (2nd ed., pp. 3–7). Cambridge: Cambridge University Press. http://site.ebrary.com/id/10421564.

    Chapter  Google Scholar 

  • Sniderman, J. M. K., Finn, J., & Denham, T. P. (2009). A late-Holocene palaeoecological record from Ambra Crater in the highlands of Papua New Guinea and implications for agricultural history. Holocene, 19(3), 449–458. https://doi.org/10.1177/0959683608101394.

    Article  Google Scholar 

  • Spaulding, S. A., Bishop, I. W., Edlund, M. B., Lee, S., Furey, P., Jovanovska, E., & Potapova, M. (2019). Diatoms of North America. https://diatoms.org/.

  • St. Clair, L. L., & Rushforth, S. R. (1976). The diatoms of Timpanogos cave National monument, Utah. American Journal of Botany, 63(1), 49–59.

    Article  Google Scholar 

  • St. Clair, L. L., Rushforth, S. R., & Allen, J. V. (1981). Diatoms of Oregon caves National monument, Oregon. Great Basin Naturalist, 41(3), 317–332.

    Google Scholar 

  • Stabell, B. (1993). A pre-industrial acidification event shown by diatom analysis of a recently acidified lake in southern Norway. Diatom Research, 8(1), 145–158.

    Article  Google Scholar 

  • Stone, J. R., & Fritz, S. C. (2004). Three-dimensional modeling of lacustrine diatom habitat areas: Improving paleolimnological interpretation of planktic:benthic ratios. Limnology and Oceanography, 49(5), 1540–1548.

    Article  Google Scholar 

  • Stone, J. R., Westover, K. S., & Cohen, A. S. (2011). Late Pleistocene paleohydrography and diatom paleoecology of the central basin of Lake Malawi, Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 303, 51–70. https://doi.org/10.1016/j.palaeo.2010.01.012.

    Article  Google Scholar 

  • Stone, J. R., Saros, J. E., & Pederson, G. T. (2016). Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes. The Holocene, 26, 1103. https://doi.org/10.1177/0959683616632886.

    Article  Google Scholar 

  • Tapia, P. M., & Harwood, D. M. (2002). Upper Cretaceous diatom biostratigraphy of the Arctic Archipelago and northern continental margin, Canada. Micropaleontology, 48(4), 303–342. https://doi.org/10.2113/48.4.303.

    Article  Google Scholar 

  • Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. O., & Dunbar, R. B. (2003). A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 139–164.

    Article  Google Scholar 

  • Thoms, M. C., Ogden, R. W., & Reid, M. A. (1999). Establishing the condition of lowland floodplain rivers: A palaeo-ecological approach. Freshwater Biology, 41, 407–423.

    Article  Google Scholar 

  • Trombold, C. D., & Israde-Alcantara, I. (2005). Paleoenvironment and plant cultivation on terraces at La Quemada, Zacatecas, Mexico: The pollen, phytolith and diatom evidence. Journal of Archaeological Science, 32(3), 341–353. https://doi.org/10.1016/j.jas.2004.10.005.

    Article  Google Scholar 

  • Tuji, A., Marsh, A., Altaweel, M., Watanabe, C. E., & Taylor, J. (2014). Diatom analysis of cuneiform tablets housed in the British museum. Bulletin of the National Museum of Nature and Science B, 40(3), 101–106.

    Google Scholar 

  • Uriz, M. J., Turon, X., Becerro, M. A., & Agell, G. (2003). Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique, 62(4), 279–299.

    Article  Google Scholar 

  • VanLandingham, S. L. (2004). Corroboration of Sangamonian age of artifacts from the Valsequillo region, Puebla, Mexico by means of diatom biostratigraphy. Micropaleontology, 50(4), 313–342.

    Article  Google Scholar 

  • VanLandingham, S. L. (2006). Diatom evidence for autochthonous artifact deposition in the Valsequillo region, Puebla, Mexico during the Sangamonian (sensu lato = 80,000 to ca. 220,000 yr BP and Illinoian (220,000 to 430,000 yr BP)). Journal of Paleolimnology, 36(1), 101–116. https://doi.org/10.1007/s10933-006-0008-4.

    Article  Google Scholar 

  • Verma, K. (2013). Role of diatoms in the world of forensic science. Journal of Forensic Research, 04(02), 2–5. https://doi.org/10.4172/2157-7145.1000181.

    Article  Google Scholar 

  • Verschuren, D., Cocquyt, C., Tibby, J., Roberts, C. N., & Leavitt, P. R. (1999). Long-term dynamics of algal and invertebrate communities in a small, fluctuating tropical soda lake. Limnology and Oceanography, 44(5), 1216–1231. https://doi.org/10.4319/lo.1999.44.5.1216.

    Article  Google Scholar 

  • Vinebrooke, R. D., & Leavitt, P. R. (1996). Effects of ultraviolet radiation on periphyton in an alpine lake. Limnology and Oceanography, 41(5), 1035–1040.

    Article  Google Scholar 

  • Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Whitmore, T. J., Brenner, M., Curtis, J. H., Dahlin, B. H., & Leyden, B. W. (1996). Holocene climatic and human influences on lakes of the Yucatan Peninsula, Mexico: An interdisciplinary, palaeolimnological approach. Holocene, 6(3), 273–287. https://doi.org/10.1177/095968369600600303.

    Article  Google Scholar 

  • Widgren, M., Maggs, T., Plikk, A., Risberg, J., Schoeman, M. H., & Westerberg, L. O. (2016). Precolonial agricultural terracing in Bokoni, South Africa: Typology and an exploratory excavation. Journal of African Archaeology, 14(1), 33–53. https://doi.org/10.3213/2191-5784-10281.

    Article  Google Scholar 

  • Wigdahl, C. R., Saros, J. E., Fritz, S. C., Stone, J. R., & Engstrom, D. R. (2014). The influence of basin morphometry on the regional coherence of patterns of diatom-inferred salinity in lakes of the northern Great Plains (USA). The Holocene, 24(5), 603–613. https://doi.org/10.1177/0959683614523154.

    Article  Google Scholar 

  • Williams, M. A. J., Williams, F. M., Gasse, F., Curtis, G. H., & Adamson, D. A. (1979). Plio-Pleistocene environments at Gadeb prehistoric site, Ethiopia. Nature, 282(1), 29–33.

    Article  Google Scholar 

  • Winsborough, B. M. (1995). Diatoms. In V. T. Holliday (Ed.), Stratigraphy and paleoenvironments of Late Quaternary valley fills on the Southern High Plains (Memoir 186) (pp. 67–82). Boulder, CO: Geological Society of America.

    Google Scholar 

  • Winsborough, B. M., Shimada, I., Newsom, L. A., Jones, J. G., & Segura, R. A. (2012). Paleoenvironmental catastrophies on the Peruvian coast revealed in lagoon sediment cores from Pachacamac. Journal of Archaeological Science, 39(3), 602–614. https://doi.org/10.1016/j.jas.2011.10.018.

    Article  Google Scholar 

  • Wolfe, A. P., & Edlund, M. B. (2005). Taxonomy, phylogeny, and paleoecology of Eoseira wilsonii gen. et sp. nov., a Middle Eocene diatom (Bacillariophyceae: Aulacoseiraceae) from lake sediments at Horsefly, British Columbia, Canada. Canadian Journal of Earth Sciences, 42(2), 243–257.

    Article  Google Scholar 

  • Wolfe, A. P., Edlund, M. B., Sweet, A. R., & Creighton, S. D. (2006). A first account of organelle preservation in Eocene nonmarine diatoms: Observations and Paleobiological implications. Palaios, 21(3), 298–304. https://doi.org/10.2110/palo.2005.p05-14e.

    Article  Google Scholar 

  • Wolin, J. A., & Stone, J. R. (2010). Diatoms as indicators of water-level change in freshwater lakes. In E. F. Stoermer & J. P. Smol (Eds.), The diatoms: Applications for the environmental and earth sciences (2nd ed., pp. 174–185). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Yost, C. L., Blinnikov, M., & Julius, M. L. (2013). Detecting ancient wild rice (Zizania spp. L.) using phytoliths: A taphonomic study of modern wild rice in Minnesota (USA) lake sediments. Journal of Paleolimnology, 49(2), 221–236. https://doi.org/10.1007/s10933-012-9670-x.

    Article  Google Scholar 

  • Yost, C. L., Jackson, L. J., Stone, J. R., & Cohen, A. S. (2018). Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption. Journal of Human Evolution, 116, 75–94. https://doi.org/10.1016/j.jhevol.2017.11.005.

    Article  Google Scholar 

  • Zeeb, B. A., & Smol, J. P. (2001). Chrysophyte scales and cysts. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking environmental change using lake sediments (Terrestrial, algal, and siliceous indicators) (Vol. 3, pp. 203–223). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Zeeb, B. A., Christie, C. E., Smol, J. P., Findlay, D. L., Kling, H. J., & Birks, H. J. B. (1994). Responses of diatom and chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 51(10), 2300–2311.

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript has been improved by helpful feedback from Karlyn S. Westover and Erika L. Smith. Some additional useful articles and techniques for diatoms in archaeology were suggested by Barbara M. Winsborough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery R. Stone .

Editor information

Editors and Affiliations

Description of the Plates

Description of the Plates

The following selection of plates is meant to showcase a wide range of diatom images to give readers enough examples to be able to distinguish diatoms from other microfossils. For a more complete collection of diatom images that could be used for genus or species level identification, we recommend visiting online guides representative of regional flora, such as Diatoms of the US (Spaulding et al. 2019) or Freshwater Diatom Flora of Britain and Ireland (Jüttner et al. 2018).

The following images have been arranged into broad groups, starting with “centric” diatoms. Centric diatoms have symmetry around one or more points (see, e.g., Plate 1). Most centric diatoms live either as solitary planktonic organisms, representing open water (Plate 1, Figs. a–d, f–k, n–r) or filamentous colonies representing environments ranging from open water (Plate 1, Figs. t–v), to flowing water (Plate 1, Figs. e, w), to aerophylic habitats (Plate 1, Fig. l, m, s).

The remaining images represent “pennate” diatoms, which are characterized by symmetry around one or more planes (see Plates 27). Pennate taxa can be further grouped by the absence/presence of their raphe structure on one or both valves, the type of raphe present, and the type of valve symmetry typically expressed. Most araphid pennate diatoms (Plate 2) are colonial (see Plate 2, Figs. i, s) and may represent either shallow or deep water environments. In contrast, most diatoms with one or more valve with a raphe structure present (Plates 37) typically represent aquatic environments where benthic substrates are sunlit.

All images in the plates were collected using a light microscope outfitted with differential interference contrast, collected at 1000× magnification. All images for the plates are identically scaled; all scale bars shown in Plates 17 are 10 μm in length.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stone, J.R., Yost, C.L. (2020). Diatom Microfossils in Archaeological Settings. In: Henry, A.G. (eds) Handbook for the Analysis of Micro-Particles in Archaeological Samples. Interdisciplinary Contributions to Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-030-42622-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42622-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42621-7

  • Online ISBN: 978-3-030-42622-4

  • eBook Packages: HistoryHistory (R0)

Publish with us

Policies and ethics