Skip to main content

Image-Guided Brain Surgery

Part of the Recent Results in Cancer Research book series (RECENTCANCER,volume 216)

Abstract

In neurosurgery, the extent of resection plays a critical role, especially in the management of malignant gliomas. These tumors are characterized through a diffuse infiltration into the surrounding brain parenchyma. Delineation between tumor and normal brain parenchyma can therefore often be challenging. During the recent years, several techniques, aiming at better intraoperative tumor visualization, have been developed and implemented in the field of brain tumor surgery. In this chapter, we discuss current strategies for intraoperative imaging in brain tumor surgery, comprising conventional techniques such as neuronavigation, techniques using fluorescence-guided surgery, and further highly precise developments such as targeted fluorescence spectroscopy or Raman spectroscopy.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acerbi F et al (2014) Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg Focus 36:E5. https://doi.org/10.3171/2013.11.FOCUS13487

    CrossRef  PubMed  Google Scholar 

  2. Acerbi F et al (2018) Fluorescein-guided surgery for resection of high-grade gliomas: a multicentric prospective phase II study (FLUOGLIO). Clin Cancer Res 24:52–61. https://doi.org/10.1158/1078-0432.ccr-17-1184

  3. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    CrossRef  CAS  Google Scholar 

  4. Belykh E et al (2016) Intraoperative fluorescence imaging for personalized brain tumor resection: current state and future directions. Front Surg 3:55. https://doi.org/10.3389/fsurg.2016.00055

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Bernal Garcia LM, Cabezudo Artero JM, Marcelo Zamorano MB, Gilete Tejero I (2015) Fluorescence-guided resection with 5-aminolevulinic Acid of subependymomas of the fourth ventricle: report of 2 cases: technical case report. Neurosurgery 11(Suppl 2):E364–E371; discussion E371. https://doi.org/10.1227/neu.0000000000000682

  6. Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, Franceschi E (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10:361–367. https://doi.org/10.1215/15228517-2008-008

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Brown TJ et al (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469. https://doi.org/10.1001/jamaoncol.2016.1373

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Butte PV et al (2014) Near-infrared imaging of brain tumors using the tumor paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus 36:E1. https://doi.org/10.3171/2013.11.focus13497

  9. Camp CH Jr et al (2014) High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photonics 8:627–634. https://doi.org/10.1038/nphoton.2014.145

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlsson SK, Brothers SP, Wahlestedt C (2014) Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 6:1359–1370. https://doi.org/10.15252/emmm.201302627

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen B et al (2012) Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium. Int J Med Sci 9:708–714. https://doi.org/10.7150/ijms.4843

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cherrick GR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600. https://doi.org/10.1172/jci104072

  13. Coburger J, Hagel V, Wirtz CR, Konig R (2015) Surgery for glioblastoma: impact of the combined use of 5-aminolevulinic acid and intraoperative MRI on extent of resection and survival. PLoS One 10:e0131872. https://doi.org/10.1371/journal.pone.0131872

  14. Colditz MJ, Leyen K, Jeffree RL (2012) Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects. J Clin Neurosci 19:1611–1616. https://doi.org/10.1016/j.jocn.2012.03.013

  15. da Silva CE, da Silva JL, da Silva VD (2010) Use of sodium fluorescein in skull base tumors. Surg Neurol Int 1:70. https://doi.org/10.4103/2152-7806.72247

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. da Silva CE, da Silva VD, da Silva JL (2014) Convexity meningiomas enhanced by sodium fluorescein. Surg Neurol Int 5:3. https://doi.org/10.4103/2152-7806.124978

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537

    CrossRef  Google Scholar 

  18. Della Puppa A et al (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir (Wien) 155:965–972; discussion 972. https://doi.org/10.1007/s00701-013-1660-x

  19. Della Puppa A et al. (2014) Predictive value of intraoperative 5-aminolevulinic acid-induced fluorescence for detecting bone invasion in meningioma surgery J Neurosurg 120:840–845 https://doi.org/10.3171/2013.12.jns131642

  20. Desroches J et al (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397. https://doi.org/10.1364/BOE.6.002380

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Desroches J et al (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8:1792. 10.1038/s41598-018-20233-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diaz RJ et al (2015) Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J Neurosurg 122:1360–1369. https://doi.org/10.3171/2015.2.JNS132507

    CrossRef  PubMed  Google Scholar 

  23. Dilek O, Ihsan A, Tulay H (2011) Anaphylactic reaction after fluorescein sodium administration during intracranial surgery. J Clin Neurosci 18:430–431. https://doi.org/10.1016/j.jocn.2010.06.012

    CrossRef  PubMed  Google Scholar 

  24. Eicker S et al (2011) ALA-induced porphyrin accumulation in medulloblastoma and its use for fluorescence-guided surgery. Cent Eur Neurosurg 72:101–103. https://doi.org/10.1055/s-0030-1252010

    CrossRef  CAS  PubMed  Google Scholar 

  25. Elhawary H et al (2011) Intraoperative real-time querying of white matter tracts during frameless stereotactic neuronavigation. Neurosurgery 68:506–516; discussion 516. https://doi.org/10.1227/neu.0b013e3182036282

  26. Ewelt C et al (2011) Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 113:541–547. https://doi.org/10.1016/j.clineuro.2011.03.008

    CrossRef  PubMed  Google Scholar 

  27. Foersch S et al (2012) Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo. PLoS ONE 7:e41760. https://doi.org/10.1371/journal.pone.0041760

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery 77:663–673. https://doi.org/10.1227/NEU.0000000000000929

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Hamamcioglu MK, Akcakaya MO, Goker B, Kasimcan MO, Kiris T (2016) The use of the YELLOW 560 nm surgical microscope filter for sodium fluorescein-guided resection of brain tumors: our preliminary results in a series of 28 patients. Clin Neurol Neurosurg 143:39–45. https://doi.org/10.1016/j.clineuro.2016.02.006

  30. Hanggi D, Etminan N, Steiger HJ (2010) The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery 67:1094–1103; discussion 1103–1094. https://doi.org/10.1227/neu.0b013e3181eb5049

  31. Hervey-Jumper SL, Berger MS (2014) Role of surgical resection in low- and high-grade gliomas. Curr Treat Options Neurol 16:284. https://doi.org/10.1007/s11940-014-0284-7

    CrossRef  PubMed  Google Scholar 

  32. Hickmann AK, Nadji-Ohl M, Hopf NJ (2015) Feasibility of fluorescence-guided resection of recurrent gliomas using five-aminolevulinic acid: retrospective analysis of surgical and neurological outcome in 58 patients. J Neurooncol 122:151–160. https://doi.org/10.1007/s11060-014-1694-9

  33. Hilgard P, Klenner T, Stekar J, Unger C (1993) Alkylphosphocholines: a new class of membrane-active anticancer agents. Cancer Chemother Pharmacol 32:90–95

    Google Scholar 

  34. Hoffman A, Goetz M, Vieth M, Galle PR, Neurath MF, Kiesslich R (2006) Confocal laser endomicroscopy: technical status and current indications. Endoscopy 38:1275–1283. https://doi.org/10.1055/s-2006-944813

    CrossRef  CAS  PubMed  Google Scholar 

  35. Hohne J, Hohenberger C, Proescholdt M, Riemenschneider MJ, Wendl C, Brawanski A, Schebesch KM (2017) Fluorescein sodium-guided resection of cerebral metastases-an update. Acta Neurochir (Wien) 159:363–367. https://doi.org/10.1007/s00701-016-3054-3

    CrossRef  Google Scholar 

  36. Hollon T, Lewis S, Freudiger CW, Sunney Xie X, Orringer DA (2016) Improving the accuracy of brain tumor surgery via Raman-based technology. Neurosurg Focus 40:E9. https://doi.org/10.3171/2015.12.FOCUS15557

    CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Idoate MA, Diez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid-induced fluorescence. Neuropathology 31:575–582. https://doi.org/10.1111/j.1440-1789.2011.01202.x

  38. Inoue T, Endo T, Nagamatsu K, Watanabe M, Tominaga T (2013) 5-aminolevulinic acid fluorescence-guided resection of intramedullary ependymoma: report of 9 cases. Neurosurgery 72:ons159–168; discussion ons168. https://doi.org/10.1227/neu.0b013e31827bc7a3

  39. Jaber M et al (2016) The value of 5-aminolevulinic acid in low-grade gliomas and high-grade gliomas lacking glioblastoma imaging features: an analysis based on fluorescence, magnetic resonance imaging, 18F-fluoroethyl tyrosine positron emission tomography, and tumor molecular factors. Neurosurgery 78:401–411; discussion 411. https://doi.org/10.1227/neu.0000000000001020

  40. Jermyn M et al (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra219. https://doi.org/10.1126/scitranslmed.aaa2384

  41. Jolesz FA (2011) Intraoperative imaging in neurosurgery: where will the future take us? Acta Neurochir Suppl 109:21–25. https://doi.org/10.1007/978-3-211-99651-5_4

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Jung TY, Jung S, Kim IY, Park SJ, Kang SS, Kim SH, Lim SC (2006) Application of neuronavigation system to brain tumor surgery with clinical experience of 420 cases. Minim Invasive Neurosurg 49:210–215. https://doi.org/10.1055/s-2006-948305

  43. Kalkanis SN et al (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 116:477–485. https://doi.org/10.1007/s11060-013-1326-9

  44. Kalkanis SN, Linskey ME (2010) Evidence-based clinical practice parameter guidelines for the treatment of patients with metastatic brain tumors: introduction. J Neurooncol 96:7–10. https://doi.org/10.1007/s11060-009-0065-4

    CrossRef  PubMed  Google Scholar 

  45. Kamp MA et al (2015) 5-ALA-induced fluorescence behavior of reactive tissue changes following glioblastoma treatment with radiation and chemotherapy. Acta Neurochir (Wien) 157:207–213; discussion 213–204. https://doi.org/10.1007/s00701-014-2313-4

  46. Kamp MA et al (2016) 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget 7:66776–66789. https://doi.org/10.18632/oncotarget.11488

  47. Kamp MA, Grosser P, Felsberg J, Slotty PJ, Steiger HJ, Reifenberger G, Sabel M (2012) 5-aminolevulinic acid (5-ALA)-induced fluorescence in intracerebral metastases: a retrospective study. Acta Neurochir (Wien) 154:223–228; discussion 228. https://doi.org/10.1007/s00701-011-1200-5

  48. Kaneko S, Suero Molina E, Ewelt C, Warneke N, Stummer W (2019) Fluorescence-based measurement of real-time kinetics of protoporphyrin IX after 5-aminolevulinic acid administration in human in situ malignant gliomas. Neurosurgery

    Google Scholar 

  49. Kim A, Khurana M, Moriyama Y, Wilson BC (2010) Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements. J Biomed Opt 15:067006. https://doi.org/10.1117/1.3523616

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kirsch M, Schackert G, Salzer R, Krafft C (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398:1707–1713. https://doi.org/10.1007/s00216-010-4116-7

    CrossRef  CAS  PubMed  Google Scholar 

  51. Kohler M, Machill S, Salzer R, Krafft C (2009) Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry. Anal Bioanal Chem 393:1513–1520. https://doi.org/10.1007/s00216-008-2592-9

    CrossRef  CAS  PubMed  Google Scholar 

  52. Koshy M et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries J Neurooncol 107:207–212 https://doi.org/10.1007/s11060-011-0738-7

  53. Kracht LW et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170. https://doi.org/10.1158/1078-0432.ccr-04-0262

  54. Krafft C, Neudert L, Simat T, Salzer R (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol Biomol Spectrosc 61:1529–1535. https://doi.org/10.1016/j.saa.2004.11.017

    CrossRef  CAS  PubMed  Google Scholar 

  55. Kremer P et al (2006) Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children. Childs Nerv Syst 22:674–678. https://doi.org/10.1007/s00381-005-0030-2

    CrossRef  PubMed  Google Scholar 

  56. Kuo JS, Zhang RR, Pinchuk AN, Clark PA, Weichert JP (2016) Creation of a dual-labeled cancer-targeting alkylphosphocholine analog for dual modality quantitative positron emission tomography and intraoperative tumor visualization. Neurosurgery 63:208

    CrossRef  Google Scholar 

  57. Kuroiwa T, Kajimoto Y, Ohta T (1998) Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report. Surg Neurol 50:41–48; discussion 48–49

    Google Scholar 

  58. Lacroix M et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. https://doi.org/10.3171/jns.2001.95.2.0190

  59. Lau D, Hervey-Jumper SL, Chang S, Molinaro AM, McDermott MW, Phillips JJ, Berger MS (2016) A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg 124:1300–1309. https://doi.org/10.3171/2015.5.jns1577

  60. Laukamp KR et al (2017) Multimodal imaging of patients with gliomas confirms (11)C-MET PET as a complementary marker to MRI for noninvasive tumor grading and intraindividual follow-up after therapy. Mol Imaging 16:1536012116687651. https://doi.org/10.1177/1536012116687651

  61. Lee JY et al (2016) Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery 79:856–871. https://doi.org/10.1227/NEU.0000000000001450

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Lee JYK, Pierce JT, Thawani JP, Zeh R, Nie S, Martinez-Lage M, Singhal S (2018) Near-infrared fluorescent image-guided surgery for intracranial meningioma. J Neurosurg 128:380–390. https://doi.org/10.3171/2016.10.JNS161636

    CrossRef  CAS  Google Scholar 

  63. Lee JYK, Pierce JT, Zeh R, Cho SS, Salinas R, Nie S, Singhal S (2017) Intraoperative near-infrared optical contrast can localize brain metastases. World Neurosurg 106:120–130. https://doi.org/10.1016/j.wneu.2017.06.128

    CrossRef  Google Scholar 

  64. Lyons SA, O’Neal J, Sontheimer H (2002) Chlorotoxin, a scorpion-derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin. Glia 39:162–173. https://doi.org/10.1002/glia.10083

  65. Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE (2014) Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol 32:774–782. https://doi.org/10.1200/JCO.2013.51.8886

    CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Martirosyan NL et al (2011) Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J Neurosurg 115:1131–1138. https://doi.org/10.3171/2011.8.JNS11559

    CrossRef  PubMed  Google Scholar 

  67. Mercier L et al (2011) New prototype neuronavigation system based on preoperative imaging and intraoperative freehand ultrasound: system description and validation. Int J Comput Assist Radiol Surg 6:507–522. https://doi.org/10.1007/s11548-010-0535-3

    CrossRef  PubMed  Google Scholar 

  68. Meyer GJ, Schober O, Hundeshagen H (1985) Uptake of 11C-L- and D-methionine in brain tumors. Eur J Nucl Med 10:373–376

    Google Scholar 

  69. Millesi M et al (2016) Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg 125:1408–1419. https://doi.org/10.3171/2015.12.jns151513

  70. Moore GE (1947) Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106:130–131. https://doi.org/10.1126/science.106.2745.130-a

    CrossRef  CAS  PubMed  Google Scholar 

  71. Morofuji Y, Matsuo T, Hayashi Y, Suyama K, Nagata I (2008) Usefulness of intraoperative photodynamic diagnosis using 5-aminolevulinic acid for meningiomas with cranial invasion: technical case report. Neurosurgery 62:102–103; discussion 103–104. https://doi.org/10.1227/01.neu.0000317378.22820.46

  72. Muragaki Y et al (2008) Low-grade glioma on stereotactic biopsy: how often is the diagnosis accurate? Minim Invasive Neurosurg 51:275–279. https://doi.org/10.1055/s-0028-1082322

    CrossRef  CAS  PubMed  Google Scholar 

  73. Nabavi A et al (2009) Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: a phase II study. Neurosurgery 65:1070–1076; discussion 1076–1077. https://doi.org/10.1227/01.neu.0000360128.03597.c7

  74. Neira JA et al (2017) Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance. J Neurosurg 127:111–122. https://doi.org/10.3171/2016.7.JNS16232

    CrossRef  PubMed  Google Scholar 

  75. Orringer D et al. (2012a) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851–859. https://doi.org/10.3171/2012.8.jns12234

  76. Orringer DA, Golby A, Jolesz F (2012b) Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices 9:491–500. https://doi.org/10.1586/erd.12.42

  77. Orringer DA et al. (2017) Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng 1. https://doi.org/10.1038/s41551-016-0027

  78. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 20:iv1–iv86. https://doi.org/10.1093/neuonc/noy131

  79. Parrish-Novak J et al (2017) Nonclinical profile of BLZ-100, a tumor-targeting fluorescent imaging agent. Int J Toxicol 36:104–112 https://doi.org/10.1177/1091581817697685

  80. Patchell RA et al (1998) Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA 280:1485–1489

    CrossRef  CAS  Google Scholar 

  81. Paulus W, Peiffer J (1989) Intratumoral histologic heterogeneity of gliomas. A quantitative study. Cancer 64:442–447

    CrossRef  CAS  PubMed  Google Scholar 

  82. Perrini P et al (2017) Survival outcomes following repeat surgery for recurrent glioblastoma: a single-center retrospective analysis. J Neurooncol 131:585–591. https://doi.org/10.1007/s11060-016-2330-7

    CrossRef  CAS  PubMed  Google Scholar 

  83. Raabe A, Beck J, Gerlach R, Zimmermann M, Seifert V (2003) Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery 52:132–139; discussion 139

    Google Scholar 

  84. Raabe A et al (2005) Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg 103:982–989. https://doi.org/10.3171/jns.2005.103.6.0982

    CrossRef  Google Scholar 

  85. Rabb MF, Burton TC, Schatz H, Yannuzzi LA (1978) Fluorescein angiography of the fundus: a schematic approach to interpretation. Surv Ophthalmol 22:387–403

    CrossRef  CAS  PubMed  Google Scholar 

  86. Raman C (1928) A new type of secondary radiation. Nature 121:501–502

    CrossRef  CAS  Google Scholar 

  87. Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA (2016) Indocyanine green: historical context, current applications, and future considerations. Surg Innov 23:166–175. https://doi.org/10.1177/1553350615604053

    CrossRef  PubMed  Google Scholar 

  88. Rey-Dios R, Hattab EM, Cohen-Gadol AA (2014) Use of intraoperative fluorescein sodium fluorescence to improve the accuracy of tissue diagnosis during stereotactic needle biopsy of high-grade gliomas. Acta Neurochir (Wien) 156:1071–1075; discussion 1075. https://doi.org/10.1007/s00701-014-2097-6

  89. Ringel F et al (2016) Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro Oncol 18:96–104. https://doi.org/10.1093/neuonc/nov145

  90. Roberts DW et al (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. Clinical Artic J Neurosurg 114:595–603. https://doi.org/10.3171/2010.2.JNS091322

    CrossRef  Google Scholar 

  91. Ruge JR, Liu J (2009) Use of 5-aminolevulinic acid for visualization and resection of a benign pediatric brain tumor. J Neurosurg Pediatr 4:484–486. https://doi.org/10.3171/2009.6.peds08428

  92. Rygh OM, Selbekk T, Torp SH, Lydersen S, Hernes TA, Unsgaard G (2008) Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien) 150:1033–1041; discussion 1042. https://doi.org/10.1007/s00701-008-0017-3

  93. Saether CA, Torsteinsen M, Torp SH, Sundstrom S, Unsgard G, Solheim O (2012) Did survival improve after the implementation of intraoperative neuronavigation and 3D ultrasound in glioblastoma surgery? a retrospective analysis of 192 primary operations. J Neurol Surg A Cent Eur Neurosurg 73:73–78. https://doi.org/10.1055/s-0031-1297247

  94. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764; discussion 264–756. https://doi.org/10.1227/01.neu.0000318159.21731.cf

  95. Sanai N et al. (2011a) Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery 68:282–290; discussion 290. https://doi.org/10.1227/neu.0b013e318212464e

  96. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011b) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8. https://doi.org/10.3171/2011.2.JNS10998; https://doi.org/10.3171/2011.7.JNS10238

  97. Sanai N, Snyder LA, Honea NJ, Coons SW, Eschbacher JM, Smith KA, Spetzler RF (2011c) Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg 115:740–748. https://doi.org/10.3171/2011.6.jns11252

  98. Schebesch KM, Brawanski A, Hohenberger C, Hohne J (2016) Fluorescein sodium-guided surgery of malignant brain tumors: history, current concepts, and future project. Turk Neurosurg 26:185–194. https://doi.org/10.5137/1019-5149.JTN.16952-16.0

    CrossRef  PubMed  Google Scholar 

  99. Schebesch KM et al (2015) Fluorescein sodium-guided surgery in cerebral lymphoma. Clin Neurol Neurosurg 139:125–128. https://doi.org/10.1016/j.clineuro.2015.09.015

    CrossRef  PubMed  Google Scholar 

  100. Schebesch KM et al (2013) Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery–a feasibility study. Acta Neurochir (Wien) 155:693–699. https://doi.org/10.1007/s00701-013-1643-y

  101. Schipmann S, Schwake M, Suero Molina E, Stummer W (2019) Markers for identifying and targeting glioblastoma cells during surgery. Acta Neurochir (Wien)

    Google Scholar 

  102. Schober O, Creutzig H, Meyer GJ, Becker H, Schwarzrock R, Dietz H, Hundeshagen H (1985a) 11C-methionine PET, IMP-SPECT, CT and MRI in brain tumors. Rofo 143:133–136. https://doi.org/10.1055/s-2008-1052777

  103. Schober O, Meyer GJ, Stolke D, Hundeshagen H (1985b) Brain tumor imaging using C-11-labeled L-methionine and D-methionine. J Nucl Med 26:98–99

    Google Scholar 

  104. Schulz C, Waldeck S, Mauer UM (2012) Intraoperative image guidance in neurosurgery: development, current indications, and future trends. Radiol Res Pract 2012:197364. https://doi.org/10.1155/2012/197364

  105. Schwake M et al (2014) Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid. Acta Neurochir (Wien) 156:1077–1084. https://doi.org/10.1007/s00701-014-2096-7

  106. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003. https://doi.org/10.1016/s1470-2045(11)70196-6

  107. Senft C, Franz K, Ulrich CT, Bink A, Szelenyi A, Gasser T, Seifert V (2010) Low field intraoperative MRI-guided surgery of gliomas: a single center experience. Clin Neurol Neurosurg 112:237–243. https://doi.org/10.1016/j.clineuro.2009.12.003

    CrossRef  PubMed  Google Scholar 

  108. Senft C, Seifert V, Hermann E, Franz K, Gasser T (2008) Usefulness of intraoperative ultra low-field magnetic resonance imaging in glioma surgery. Neurosurgery 63:257–266; discussion 266–257. https://doi.org/10.1227/01.neu.0000313624.77452.3c

  109. Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T, Sakai N (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg 99:597–603. https://doi.org/10.3171/jns.2003.99.3.0597

    CrossRef  PubMed  Google Scholar 

  110. Smith JS et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345. https://doi.org/10.1200/JCO.2007.13.9337

    CrossRef  PubMed  Google Scholar 

  111. Stummer W (2015) Poor man’s fluorescence? Acta Neurochir (Wien) 157:1379–1381. https://doi.org/10.1007/s00701-015-2471-z

    CrossRef  Google Scholar 

  112. Stummer W, Gotz C, Hassan A, Heimann A, Kempski O (1993) Kinetics of Photofrin II in perifocal brain edema. Neurosurgery 33:1075–1081; discussion 1081–1072

    Google Scholar 

  113. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013. https://doi.org/10.3171/jns.2000.93.6.1003

  114. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, Group AL-GS (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401. https://doi.org/10.1016/s1470-2045(06)70665-9

  115. Stummer W et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576; discussion 564–576. https://doi.org/10.1227/01.neu.0000317304.31579.17

  116. Stummer W et al (2014a) Predicting the “usefulness” of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey. Acta Neurochir (Wien) 156:2315–2324. https://doi.org/10.1007/s00701-014-2234-2

  117. Stummer W, Stepp H, Moller G, Ehrhardt A, Leonhard M, Reulen HJ (1998a) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140:995–1000

    Google Scholar 

  118. Stummer W, Stepp H, Wiestler OD, Pichlmeier U (2017) Randomized, prospective double-blinded study comparing 3 different doses of 5-aminolevulinic acid for fluorescence-guided resections of malignant gliomas. Neurosurgery 81:230–239. https://doi.org/10.1093/neuros/nyx074

  119. Stummer W et al (1998b) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525; discussion 525–516

    Google Scholar 

  120. Stummer W, Suero Molina E (2017) Fluorescence imaging/agents in tumor resection. Neurosurg Clin N Am 28:569–583. https://doi.org/10.1016/j.nec.2017.05.009

    CrossRef  PubMed  Google Scholar 

  121. Stummer W et al (2014b) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319; discussion 319–320. https://doi.org/10.1227/neu.0000000000000267

  122. Suchorska B et al (2016) Complete resection of contrast-enhancing tumor volume is associated with improved survival in recurrent glioblastoma-results from the DIRECTOR trial. Neuro Oncol 18:549–556. https://doi.org/10.1093/neuonc/nov326

    CrossRef  PubMed  PubMed Central  Google Scholar 

  123. Suero Molina E, Wolfer J, Ewelt C, Ehrhardt A, Brokinkel B, Stummer W (2018) Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas: technical note. J Neurosurg 128:399–405. https://doi.org/10.3171/2016.11.jns161072

  124. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91:804–813. https://doi.org/10.3171/jns.1999.91.5.0804

    CrossRef  CAS  PubMed  Google Scholar 

  125. Swanson KI, Clark PA, Zhang RR, Kandela IK, Farhoud M, Weichert JP, Kuo JS (2015) Fluorescent cancer-selective alkylphosphocholine analogs for intraoperative glioma detection Neurosurgery 76:115–123; discussion 123–114. https://doi.org/10.1227/neu.0000000000000622

  126. Taal W et al (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113:405–410. https://doi.org/10.1002/cncr.23562

    CrossRef  CAS  Google Scholar 

  127. Takeda J et al. (2017) 5-ALA fluorescence-guided endoscopic surgery for mixed germ cell tumors. J Neurooncol 134:119–124. https://doi.org/10.1007/s11060-017-2494-9

  128. Teixidor P et al (2016) Safety and efficacy of 5-aminolevulinic acid for high grade glioma in usual clinical practice: a prospective cohort study. PLoS One 11:e0149244. https://doi.org/10.1371/journal.pone.0149244

  129. Tew JM (1999) M. Gazi Yasargil: neurosurgery’s man of the century. Neurosurgery 45:1010–1014

    Google Scholar 

  130. Uematsu Y, Owai Y, Okita R, Tanaka Y, Itakura T (2007) The usefulness and problem of intraoperative rapid diagnosis in surgical neuropathology. Brain Tumor Pathol 24:47–52. https://doi.org/10.1007/s10014-007-0219-z

    CrossRef  PubMed  Google Scholar 

  131. Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, Fujii K (2007a) Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study. Brain Tumor Pathol 24:53–55. https://doi.org/10.1007/s10014-007-0223-3

  132. Utsuki S, Oka H, Kijima C, Miyajima Y, Hagiwara H, Fujii K (2011) Utility of intraoperative fluorescent diagnosis of residual hemangioblastoma using 5-aminolevulinic acid. Neurol India 59:612–615. https://doi.org/10.4103/0028-3886.84349

  133. Utsuki S et al (2007b) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir (Tokyo) 47:210–213; discussion 213–214

    Google Scholar 

  134. Valdes PA et al (2014) 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo. Neurosurgery 10(Suppl 1):74–82; discussion 82–73. https://doi.org/10.1227/neu.0000000000000117

  135. Valdes PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD, Roberts DW (2015) Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg 123:771–780. https://doi.org/10.3171/2014.12.jns14391

  136. Valdes PA et al (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17. https://doi.org/10.3171/2011.2.JNS101451

    CrossRef  PubMed  PubMed Central  Google Scholar 

  137. Valdes PA, Roberts DW, Lu FK, Golby A (2016) Optical technologies for intraoperative neurosurgical guidance. Neurosurg Focus 40:E8. https://doi.org/10.3171/2015.12.FOCUS15550

    CrossRef  PubMed  PubMed Central  Google Scholar 

  138. Villanueva-Meyer JE, Mabray MC, Cha S (2017) Current clinical brain tumor imaging. Neurosurgery 81:397–415. https://doi.org/10.1093/neuros/nyx103

    CrossRef  PubMed  PubMed Central  Google Scholar 

  139. Weichert JP et al (2014) Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med 6:240ra275. https://doi.org/10.1126/scitranslmed.3007646

  140. Widhalm G et al (2013) 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS One 8:e76988. https://doi.org/10.1371/journal.pone.0076988

  141. Wilbers E, Hargus G, Wolfer J, Stummer W (2014) Usefulness of 5-ALA (Gliolan(R))-derived PPX fluorescence for demonstrating the extent of infiltration in atypical meningiomas. Acta Neurochir (Wien) 156:1853–1854. https://doi.org/10.1007/s00701-014-2148-z

  142. Yamamoto T et al (2015) Photodynamic diagnosis using 5-aminolevulinic acid in 41 biopsies for primary central nervous system lymphoma. Photochem Photobiol 91:1452–1457. https://doi.org/10.1111/php.12510

  143. Yun J, Iwamoto FM, Sonabend AM (2016) Primary central nervous system lymphoma: a critical review of the role of surgery for resection. Arch Cancer Res 4. https://doi.org/10.21767/2254-6081.100071

  144. Zhang RR, Swanson KI, Hall LT, Weichert JP, Kuo JS (2016) Diapeutic cancer-targeting alkylphosphocholine analogs may advance management of brain malignancies. CNS Oncol 5:223–231. https://doi.org/10.2217/cns-2016-0017

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Schipmann-Miletić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schipmann-Miletić, S., Stummer, W. (2020). Image-Guided Brain Surgery. In: Schober, O., Kiessling, F., Debus, J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-030-42618-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42618-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42617-0

  • Online ISBN: 978-3-030-42618-7

  • eBook Packages: MedicineMedicine (R0)