Skip to main content

An Ensemble Approach to Modelling the Combined Effect of Risk Factors on Age at Parkinson’s Disease Onset

  • Chapter
  • First Online:
Case Studies in Applied Bayesian Data Science

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2259))

  • 2033 Accesses

Abstract

Ensemble approaches to statistical modelling combine multiple statistical methods to form a comprehensive analysis. They are of increasing interest for problems that involve diverse data sources, complex systems and subtle outcomes of interest. An example of such an ensemble approach is described in this chapter, in the context of a substantive case study that aimed to tease out factors affecting the age at onset of the neurodegenerative medical condition, Parkinsons Disease (PD), with a particular focus on the role of a particular potential risk factor, pesticide exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Dauer, S. Przedborski, Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003)

    Article  Google Scholar 

  2. M.J. Farrer, Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7, 306–318 (2006)

    Article  Google Scholar 

  3. A.A. Hicks, H. Pétursson, T. Jonsson, H. Stefánsson, H.S. Johannsdottir, J. Sainz, M.L. Frigge, A. Kong, J.R. Gulcher, K. Stefansson, et al., A susceptibility gene for late-onset idiopathic Parkinson’s disease. Ann. Neurol. 52, 549–555 (2002)

    Article  Google Scholar 

  4. E.R. Martin, W.K. Scott, M.A. Nance, et al., Association of single-nucleotide polymorphisms of the Tau gene with late-onset Parkinson’s disease. J. Am. Med. Assoc. 286, 2245–2250 (2001)

    Article  Google Scholar 

  5. T.H. Hamza, et al., Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 (2010)

    Article  Google Scholar 

  6. C.B. Lücking, A. Dürr, V. Bonifati, J. Vaughan, G. De Michele, T. Gasser, B.S. Harhangi, G. Meco, P. Denéfle, N.W. Wood, Association between early-onset Parkinson’s disease and mutations in the Parkin gene. New Engl. J. Med. 342, 1560–1567 (2000)

    Article  Google Scholar 

  7. M. Periquet, M. Latouche, E. Lohmann, N. Rawal, G. De Michele, S. Ricard, H. Teive, V. Fraix, M. Vidailhet, D. Nicholl, Parkin mutations are frequent in patients with isolated early-onset Parkinsonism. Brain 126, 1271–1278 (2003)

    Article  Google Scholar 

  8. S. Hague, E. Rogaeva, D. Hernandez, C. Gulick, A. Singleton, M. Hanson, J. Johnson, R. Weiser, M. Gallardo, B. Ravina, Early-onset Parkinson’s disease caused by a compound heterozygous DJ-1 mutation. Ann. Neurol. 54, 271–274 (2003)

    Article  Google Scholar 

  9. V. Bonifati, P. Rizzu, M.J. van Baren, O. Schaap, G.J. Breedveld, E. Krieger, M.C. Dekker, F. Squitieri, P. Ibanez, M. Joosse, Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science, 299, 256–259 (2003)

    Article  Google Scholar 

  10. E.M. Valente, P.M. Abou-Sleiman, V. Caputo, M.M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A.R. Bentivoglio, D.G. Healy, Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004)

    Article  Google Scholar 

  11. R.C. Duvoisin, R. Eldridge, A. Williams, J. Nutt, D. Calne, Twin study Of Parkinson disease. Neurology 31, 77–77 (1981)

    Article  Google Scholar 

  12. C.D. Ward, R.C. Duvoisin, S.E. Ince, J.D. Nutt, R. Eldridge, D.B. Calne, Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 33, 815–815 (1983)

    Article  Google Scholar 

  13. C. Marsden, Parkinson’s disease in twins. J. Neurol. Neurosurg. Psychiatry 50, 105–106 (1987)

    Article  Google Scholar 

  14. R. Marttila, J. Kaprio, M. Koskenvuo, U. Rinne, Parkinson’s disease in a nationwide twin cohort. Neurology, 38, 1217–1217 (1988)

    Article  Google Scholar 

  15. T. Zimmerman, M. Bhatt, D. Calne, R. Duvoisin, Parkinson’s disease in monozygotic twins: a follow-up. Neurology 41, 255 (1991)

    Google Scholar 

  16. P. Vieregge, K. Schiffke, H. Friedrich, B. Müller, H. Ludin, Parkinson’s disease in twins. Neurology 42, 1453–1453 (1992)

    Article  Google Scholar 

  17. C. Tanner, R. Ottman, S. Goldman, et al., Parkinson disease in twins: an etiologic study. J. Am. Med. Assoc. 281, 341–346 (1999)

    Article  Google Scholar 

  18. J.M. Gorell, E.L. Peterson, B.A. Rybicki, C.C. Johnson, Multiple risk factors for Parkinson’s disease. J. Neurol. Sci. 217, 169–174 (2004)

    Article  Google Scholar 

  19. H. Checkoway, K. Powers, T. Smith-Weller, G.M. Franklin, W.T. Longstreth, P.D. Swanson, Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol. 155, 732–738 (2002)

    Article  Google Scholar 

  20. H. Payami, K. Larsen, S. Bernard, J. Nutt, Increased risk of Parkinson’s disease in parents and siblings of patients. Ann. Neurol. 36, 659–661 (1994)

    Article  Google Scholar 

  21. C.A. Taylor, M.H. Saint-Hilaire, L.A. Cupples, C.A. Thomas, A.E. Burchard, R.G. Feldman, R.H. Myers, Environmental, medical, and family history risk factors for Parkinson’s disease: a New England-based case control study. Am. J. Med. Genet. 88, 742–749 (1999)

    Article  Google Scholar 

  22. J.A. Driver, G. Logroscino, J.M. Gaziano, T. Kurth, Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 72, 432–438 (2009)

    Article  Google Scholar 

  23. M.A. Hernán, B. Takkouche, F. Caamaño Isorna, J.J. Gestal-Otero, A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann. Neurol. 52, 276–284 (2002)

    Article  Google Scholar 

  24. A. Ascherio, S.M. Zhang, M.A. Hernán, I. Kawachi, G.A. Colditz, F.E. Speizer, W.C. Willett, Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann. Neurol. 50, 56–63 (2001)

    Article  Google Scholar 

  25. A.E. Lang, C.D. Marsden, J.A. Obeso, J.D. Parkes, Alcohol and Parkinson disease. Ann. Neurol. 12, 254–256 (1982)

    Article  Google Scholar 

  26. M.A. Hernán, H. Chen, M.A. Schwarzschild, A. Ascherio, Alcohol consumption and the incidence of Parkinson’s disease. Ann. Neurol. 54, 170–175 (2003)

    Article  Google Scholar 

  27. N. Palacios, X. Gao, E. O’Reilly, M. Schwarzschild, M.L. McCullough, T. Mayo, S.M. Gapstur, A.A. Ascherio, Alcohol and risk of Parkinson’s disease in a large, prospective cohort of men and women. Mov. Disord. 27, 980–987 (2012)

    Article  Google Scholar 

  28. A. Ascherio, H. Chen, M.G. Weisskopf, E. O’Reilly, M.L. McCullough, E.E. Calle, M.A. Schwarzschild, M.J. Thun, Pesticide exposure and risk for Parkinson’s disease. Ann. Neurol. 60, 197–203 (2006)

    Article  Google Scholar 

  29. J.R. Richardson, S.L. Shalat, B. Buckley, et al., Elevated serum pesticide levels and risk of Parkinson’s disease. Arch. Neurol. 66, 870–875 (2009)

    Article  Google Scholar 

  30. A.F. Hernández, B. González-Alzaga, I. López-Flores, M. Lacasaña, Systematic reviews on neurodevelopmental and neurodegenerative disorders linked to pesticide exposure: methodological features and impact on risk assessment. Environ. Int. 92, 657–679 (2016)

    Article  Google Scholar 

  31. M. Weisskopf, P. Knekt, E. O’Reilly, J. Lyytinen, A. Reunanen, F. Laden, L. Altshul, A. Ascherio, Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 74, 1055–1061 (2010)

    Article  Google Scholar 

  32. S.M. Goldman, C.M. Tanner, D. Oakes, G.S. Bhudhikanok, A. Gupta, J.W. Langston, Head injury and Parkinson’s disease risk in twins. Ann. Neurol. 60, 65–72 (2006)

    Article  Google Scholar 

  33. A. Hofman, H. Collette, A. Bartelds, Incidence and risk factors of Parkinson’s disease in The Netherlands. Neuroepidemiology 8, 296–299 (1989)

    Article  Google Scholar 

  34. K. Rugbjerg, B. Ritz, L. Korbo, N. Martinussen, J.H. Olsen, Risk of Parkinson’s disease after hospital contact for head injury: population based case-control study. Br. Med. J. 337, a2494 (2008)

    Article  Google Scholar 

  35. R.L. Levine, J.C. Jones, N. Bee, Stroke and Parkinson’s disease. Stroke 23, 839–842 (1992)

    Article  Google Scholar 

  36. X. Gao, H. Chen, T.T. Fung, G. Logroscino, M.A. Schwarzschild, F.B. Hu, A. Ascherio, Prospective study of dietary pattern and risk of Parkinson disease. Am. J. Clin. Nutr. 86, 1486–1494 (2007)

    Article  Google Scholar 

  37. A. Priyadarshi, S.A. Khuder, E.A. Schaub, S. Shrivastava, A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology 21, 435–440 (2000)

    Google Scholar 

  38. E.E. Ntzani, M. Chondrogiorgi, G. Ntritsos, E. Evangelou, I. Tzoulaki, Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publication (2013)

    Google Scholar 

  39. D.B. Hancock, E.R. Martin, J.M. Stajich, R. Jewett, M.A. Stacy, B.L. Scott, J.M. Vance, W.K. Scott, Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch. Neurol. 64, 576–580 (2007)

    Article  Google Scholar 

  40. K.M. Powers, D.M. Kay, S.A. Factor, C.P. Zabetian, D.S. Higgins, A. Samii, J.G. Nutt, A. Griffith, B. Leis, J.W. Roberts, E.D. Martinez, J.S. Montimurro, H. Checkoway, H. Payami, Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Move. Disord. 23, 88–95 (2008)

    Article  Google Scholar 

  41. A.J. Lees, J. Hardy, T. Revesz, Parkinson’s disease. Lancet 373, 2055–2066 (2009)

    Article  Google Scholar 

  42. A.J. Noyce, A.J. Lees, A.-E. Schrag, The prediagnostic phase of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 87, 871-878 (2016). jnnp–2015

    Article  Google Scholar 

  43. A. Elbaz, J. Clavel, P.J. Rathouz, F. Moisan, J.-P. Galanaud, B. Delemotte, A. Alperovitch, C. Tzourio, Professional exposure to pesticides and Parkinson disease. Ann. Neurol. 66, 494–504 (2009)

    Article  Google Scholar 

  44. M. Stern, E. Dulaney, S.B. Gruber, L. Golbe, M. Bergen, H. Hurtig, S. Gollomp, P. Stolley, The epidemiology of Parkinson’s disease: a case-control study of young-onset and old-onset patients. Arch. Neurol. 48, 903–907 (1991)

    Article  Google Scholar 

  45. C. Tsai, S. Lo, L. See, H. Chen, R. Chen, Y. Weng, F. Chang, C. Lu, Environmental risk factors of young onset Parkinson’s disease: a case-control study. Clin. Neurol. Neurosurg. 104 (2002), 328–333

    Article  Google Scholar 

  46. N.E. Maher, et al., Epidemiologic study of 203 sibling pairs with Parkinson’s disease: the GenePD study. Neurology 58, 79–84 (2002)

    Article  Google Scholar 

  47. J.B. Wilk, T.L. Lash, Risk factor studies of age-at-onset in a sample ascertained for Parkinson disease affected sibling pairs: a cautionary tale. Emerg. Themes Epidemiol. 4, 1 (2007)

    Article  Google Scholar 

  48. G. Pezzoli, M. Canesi, A. Antonini, A. Righini, L. Perbellini, M. Barichella, C. Mariani, F. Tenconi, S. Tesei, A. Zecchinelli, K. Leenders, Hydrocarbon exposure and Parkinson’s disease. Neurology 55, 667–673 (2000)

    Article  Google Scholar 

  49. J. Molina, F.J. Jiménez-Jiménez, J. Navarro, E. Ruiz, J. Arenas, F. Cabrera-Valdivia, A. Vázquez, P. Fernández-Calle, L. Ayuso-Peralta, M. Rabasa, et al., Plasma levels of nitrates in patients with Parkinson’s disease. J. Neurol. Sci. 127, 87–89 (1994)

    Article  Google Scholar 

  50. J. Sanyal, B.N. Sarkar, T.K. Banerjee, S.C. Mukherjee, B.C. Ray, V.R. Rao, Plasma level of nitrates in patients with Parkinson’s disease in West Bengal. Neurol. Asia 15, 55–59 (2010)

    Google Scholar 

  51. G. Bartzokis, T.A. Tishler, I.S. Shin, P.H. Lu, J.L. Cummings, Brain ferritin iron as a risk factor for age at onset in neurodegenerative diseases. Ann. N. Y. Acad. Sci. 1012, 224–36 (2004)

    Article  Google Scholar 

  52. K. Marder, G. Levy, E.D. Louis, H. Mejia-Santana, L. Cote, H. Andrews, J. Harris, C. Waters, B. Ford, S. Frucht, et al., Familial aggregation of early- and late-onset Parkinson’s disease. Ann. Neurol. 54, 507–513 (2003)

    Article  Google Scholar 

  53. B.A. Rybicki, C.C. Johnson, E.L. Peterson, G.X. Kortsha, J.M. Gorell, A family history of Parkinson’s disease and its effect on other PD risk factors. Neuroepidemiology 18, 270–278 (1999)

    Article  Google Scholar 

  54. G.T. Sutherland, G.M. Halliday, P.A. Silburn, F.L. Mastaglia, D.B. Rowe, R.S. Boyle, J.D. O’Sullivan, T. Ly, S.D. Wilton, G.D. Mellick, Do polymorphisms in the familial Parkinsonism genes contribute to risk for sporadic Parkinson’s disease? Move. Disord. 24, 833–838 (2009)

    Article  Google Scholar 

  55. A. Thomas, L.-M.L. Toms, F.A. Harden, P. Hobson, N.M. White, K.L. Mengersen, J.F. Mueller, Concentrations of organochlorine pesticides in pooled human serum by age and gender. Environ. Res. 154, 10–18 (2017)

    Article  Google Scholar 

  56. M. Borenstein, L.V. Hedges, J. Higgins, H.R. Rothstein, Introduction To Meta-analysis (Wiley Online Library, Hoboken, 2009)

    Google Scholar 

  57. J. Pearl, Bayesian networks: a model of self-activated memory for evidential reasoning, in Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine, CA, USA, pp. 15–17 (1985)

    Google Scholar 

  58. M.J. Druzdzel, F.J. Díez, Combining knowledge from different sources in causal probabilistic models. J. Mach. Learn. Res. 4, 295–316 (2003)

    MathSciNet  MATH  Google Scholar 

  59. M.J. Druzdzel, GeNIe: a development environment for graphical decision-analytic models, in Proceedings of the AMIA Symposium (1999), p. 1206

    Google Scholar 

  60. H.B. Ferraz, L.A. Andrade, V. Tumas, L.C. Calia, V. Borges, Rural or urban living and Parkinson’s disease. Arquivos de neuro-psiquiatria 54, 37–41 (1996)

    Article  Google Scholar 

  61. J. De Reuck, M. De Weweire, G. Van Maele, P. Santens, Comparison of age of onset and development of motor complications between smokers and non-smokers in Parkinson’s disease. J. Neurol. Sci. 231, 35–39 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerrie L. Mengersen .

Editor information

Editors and Affiliations

Appendix: Supporting Information

Appendix: Supporting Information

Let Y  represent early age at onset and X represent the presence of one or more risk factors, which include smoking, alcohol, head injury or family history. Let X c represent the absence of risk factors and define E as,

$$\displaystyle \begin{aligned} E &= Y \cap (X) {} \end{aligned} $$
(11.9)

where E can be a lifestyle or medical history effect conducive to an early age at onset, such that when E represents lifestyle, X = {X 1 = smoking, X 2 = alcohol}. When E represents medical history, X = {X 1 = head injury, X 2 = family history}.

We wish to quantify the conditional probabilities P(E|X) and the data available is in the form of ORs and marginal probabilities as derived from the literature and from meta-analyses. These ORs take the following form,

(11.10)

Equation 11.10 can be rearranged to express OR(E|X) entirely in terms of P(E|X) and its marginal probabilities,

(11.11)

We solve Eq. 11.11 for P(E|X), which involves solving for the roots of the quadratic on P(E|X), to obtain the following expression for the CPT,

$$\displaystyle \begin{aligned} P(E | X) &= \frac{OR(E | X)P(X) + OR(E | X)P(E) + P(X^c) + P(E) \pm \sqrt{\psi}}{2[OR(E | X)P(X) + P(X)]} \\ \text{where }\, \psi &= [OR(E | X)P(X) + OR(E | X)P(E) + P(X^c) + P(E)]^2 \\ &\qquad - 4[OR(E | X)P(X) + P(X)][OR(E | X)P(E)] {} \end{aligned} $$
(11.12)

In the presence of more than one risk factor, due to the absence of data covering different combinations of risk factors, we assume conditional independence. For example, to estimate the lifestyle effects CPT P(E|X 1, X 2), assuming smoking (X 1) and alcohol (X 2) are conditionally independent, the CPT is quantified as,

$$\displaystyle \begin{aligned} P(E | X_1, X_2) &= \frac{P(E, X_1, X_2)}{P(X_1, X_2)} \\ &= \frac{P(E,X_1,X_2)}{P(X_1)P(X_2)} \\ &= \frac{P(X_1|E,X_2)P(E,X_2)}{P(X_1)P(X_2)} \\ &= \frac{P(X_1|E)P(E,X_2)}{P(X_1)P(X_2)} \\ &= \frac{P(E|X_1)P(X_1)P(E,X_2)}{P(E)P(X_1)P(X_2)} \\ &= \frac{P(E|X_1)P(E,X_2)}{P(E)P(X_2)} \\ &= \frac{P(E|X_1)P(E|X_2)P(X_2)}{P(E)P(X_2)} \\ P(E | X_1, X_2) &= \frac{P(E | X_1)P(E | X_2)}{P(E)} {} \end{aligned} $$
(11.13)

where P(E|X 1) and P(E|X 2) can be evaluated as per Eq. 11.12. From Eq. 11.9 where we have the presence of atleast one risk factor, P(E) is,

$$\displaystyle \begin{aligned} P(E) &= P(Y, X_{1}, X_{2}) + P(Y, X_{1}, X^{c}_{2}) + P(Y, X^{c}_{1}, X_{2}) {} \end{aligned} $$
(11.14)

In the QPP data source, we derived an OR for early onset given pesticide exposure using logistic regression. We assume this is approximately equal to the OR for early onset given OCP, OR(Y |OCP) where OCP represents exposure to OCPs. Thus, we apply Eq. 11.12 to estimate P(Y |E OCP) where E OCP represents the effect of OCP exposure conducive to an early age at onset.

To estimate the conditional probabilities of the terminal node P(Y |E L, E M, E OCP), we assume that E L, E M and E OCP are conditionally independent of each other due to the lack of existing studies on the combined effects of lifestyle, medical history and OCP exposure on an early age at PD onset. Here, E L represents lifestyle effect and E M represents medical history effect.

$$\displaystyle \begin{aligned} P(Y | E_L, E_M, E_{OCP}) &= \frac{P(Y,E_L,E_M,E_{OCP})}{P(E_L,E_M,E_{OCP})} \\ &= \frac{P(E_L|Y,E_M,E_{OCP})P(Y,E_M,E_{OCP})}{P(E_L)P(E_M)P(E_{OCP})} \\ &= \frac{P(E_L|Y)P(Y,E_M,E_{OCP})}{P(E_L)P(E_M)P(E_{OCP})} \\ &= \frac{P(E_L|Y)P(E_M|Y)P(Y,E_{OCP})}{P(E_L)P(E_M)P(E_{OCP})} \\ &= \frac{P(E_L|Y)P(E_M|Y)P(Y|E_{OCP})}{P(E_L)P(E_M)} \\ &= \frac{P(E_L,Y)P(E_M,Y)P(Y|E_{OCP})}{P(E_L)P(E_M)P(Y)^2} \\ P(Y | E_L, E_M, E_{OCP}) &= \frac{P(Y | E_L)P(Y | E_M) P(Y | E_{OCP})}{P(Y)^2} {} \end{aligned} $$
(11.15)

We can obtain P(Y |E L) and equivalently P(Y |E M) based on their relevant risk factors as informed by the QPP data source.

$$\displaystyle \begin{aligned} P(Y|E_L) = P(Y|S \vee A) = \frac{P(Y,S,A) + P(Y,S,A^c) + P(Y,S^c,A)}{P(S,A) + P(S,A^c) + P(S^c,A)} {} \end{aligned} $$
(11.16)

where S and A represent smoking and alcohol respectively and S c and A c represent the absence of smoking and alcohol respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, A., Wu, P., White, N.M., Toms, L., Mellick, G., Mengersen, K.L. (2020). An Ensemble Approach to Modelling the Combined Effect of Risk Factors on Age at Parkinson’s Disease Onset. In: Mengersen, K., Pudlo, P., Robert, C. (eds) Case Studies in Applied Bayesian Data Science. Lecture Notes in Mathematics, vol 2259. Springer, Cham. https://doi.org/10.1007/978-3-030-42553-1_11

Download citation

Publish with us

Policies and ethics