Skip to main content

Platform for Adaptation of Myoelectric Prostheses in People with Upper Limb Amputation

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Abstract

This paper describes a platform for adaptation of myoelectric prostheses in people with upper limb amputation. The design of the platform is based on the anthropometry and biomechanics of human upper limb, servomotors are used to drive each degree of freedom, except in the articulation of the elbow, in which a gear motor is used. The myoelectric signal acquisition system includes Myoware myoelectric signal sensors from the company Advancer Technologies, an embedded system based on Arduino and a graphic interface to visualize myoelectric signals in real time. The implementation platform allows to replicate flexion/extension movements for the elbow, wrist, and each finger of the hand, pronation/supination of the wrist, and adduction/abduction of the thumb. The data acquisition system allows to visualize in real time, muscular activity concerning for 4 muscles, and was tested in people with upper limb amputation registering significant values for different movement intentions. The platform presented provides a feedback that could improve the adaptation of a superior limb amputee to a myoelectric prosthesis. The characterization of myoelectric signals generated by the residual limb of a person with upper limb amputation, allows to generate control signals according to a movement intention that would be replicated in the platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maduri, P., Akhondi, H.: Upper limb amputation. In: StatPearls [Internet]. StatPearls Publishing (2019)

    Google Scholar 

  2. Ribeiro, J., et al.: Analysis of man-machine interfaces in upper-limb prosthesis: a review. Robotics 8(1), 16 (2019)

    Article  Google Scholar 

  3. Dar, F.M., Asgher, U., Malik, D., Adil, E., Shahzad, H., Ali, A.: Automation of prosthetic upper limbs for transhumeral amputees using switch-controlled motors. arXiv preprint arXiv:1401.5181 (2014)

  4. Geethanjali, P.: Myoelectric control of prosthetic hands: state-of-the-art review. Med. Dev. (Auckland, NZ) 9, 247 (2016)

    Google Scholar 

  5. Grimm, F., Walter, A., Spüler, M., Naros, G., Rosenstiel, W., Gharabaghi, A.: Hybrid neuroprosthesis for the upper limb: combining brain-controlled neuromuscular stimulation with a multi-joint arm exoskeleton. Front. Neurosci. 10, 367 (2016)

    Google Scholar 

  6. Nader, H.G.: Otto Bock Prosthetic Compendium-Upper Limb Prostheses, 2nd edn. Schiele & Schon, Berlin (2002)

    Google Scholar 

  7. Hahne, J.M., Markovic, M., Farina, D.: User adaptation in myoelectric man-machine interfaces. Sci. Rep. 7(1), 4437 (2017)

    Article  Google Scholar 

  8. Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007)

    Article  Google Scholar 

  9. Hahne, J.M., Graimann, B., Muller, K.R.: Spatial filtering for robust myoelectric control. IEEE Trans. Biomed. Eng. 59(5), 1436–1443 (2012)

    Article  Google Scholar 

  10. Young, A.J., Smith, L.H., Rouse, E.J., Hargrove, L.J.: Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans. Biomed. Eng. 60(5), 1250–1258 (2012)

    Article  Google Scholar 

  11. Ameri, A., Kamavuako, E.N., Scheme, E.J., Englehart, K.B., Parker, P.A.: Support vector regression for improved real-time, simultaneous myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1198–1209 (2014)

    Article  Google Scholar 

  12. Kyranou, I., Vijayakumar, S., Erden, M.S.: Causes of performance degradation in non-invasive electromyographic pattern recognition in upper limbs prostheses. Front. Neurorobotics 12, 58 (2018)

    Article  Google Scholar 

  13. Dawson, M.R., Carey, J.P., Fahimi, F.: Myoelectric training systems. Expert Rev. Med. Devices 8(5), 581–589 (2011)

    Article  Google Scholar 

  14. Prahm, C., Vujaklija, I., Kayali, F., Purgathofer, P., Aszmann, O.C.: Game-based rehabilitation for myoelectric prosthesis control. JMIR Serious Games 5(1), e3 (2017)

    Article  Google Scholar 

  15. Radhakrishnan, M., Smailagic, A., French, B., Siewiorek, D. P., Balan, R.K.: Design and assessment of myoelectric games for prosthesis training of upper limb amputees. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 151–157. IEEE, March 2019

    Google Scholar 

  16. Austin, J., Shehata, A.W., Dawson, M.R., Carey, J., Hebert, J.S.: Improving performance of pattern recognition-based myoelectric control using a desktop robotic arm training tool. In: 2018 IEEE Life Sciences Conference (LSC), pp. 231–234. IEEE, October 2018

    Google Scholar 

  17. Dombrowski, M., Smith, Peter A., Buyssens, R.: Utilizing digital game environments for training prosthetic use. In: Lackey, S., Shumaker, R. (eds.) VAMR 2016. LNCS, vol. 9740, pp. 481–489. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39907-2_46

    Chapter  Google Scholar 

  18. Ávila Chaurand, R., Prado León, L.R., González Muñoz, E.L.: Dimensiones antropométricas de población latinoamericana. Universidad de Guadalajara, CUAAD (2007)

    Google Scholar 

  19. Bennett, D.A., Mitchell, J.E., Truex, D., Goldfarb, M.: Design of a myoelectric transhumeral prosthesis. IEEE/ASME Trans. Mechatron. 21(4), 1868–1879 (2016)

    Article  Google Scholar 

  20. Calado, A.L.A.: Comparison between low-cost and high-end sEMG sensors for the control of a transradial myoelectric prosthesis (Doctoral dissertation) (2017)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support provided by DGI of Universidad Santiago de Cali, Colombia, project No. 819-621119-421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Francisco Arcos Hurtado .

Editor information

Editors and Affiliations

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arcos Hurtado, E.F., Ortegón Sanchez, A.F., Rentería, J., Castillo Garcia, J.F., Millán Castro, M.d.M. (2020). Platform for Adaptation of Myoelectric Prostheses in People with Upper Limb Amputation. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-42531-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42531-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42530-2

  • Online ISBN: 978-3-030-42531-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics