Skip to main content

Estimation of Electrical Conductivity from Radiofrequency Hyperthermia Therapy for Cancer Treatment by Levenberg Marquardt Method

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Abstract

Introduction: The radiofrequency hyperthermia is a technique that by induction of the electromagnetic waves produces the heating in the biological tissues. The increase in body temperature in a range of 40 °C to 46 °C causing heat-induced necrosis, protein inactivity, and inhibition of DNA recovery mechanisms in the cancer cell. The application of this therapy depends on parameters like the frequency and power and physical properties of the tissue, which vary from person to person. One of the important properties is the electrical conductivity of the tissue, which varies depending on the tissue and frequency. In this paper, the electrical conductivity estimation is performed in hyperthermia therapy with different frequencies. Methodology: The estimation process of electrical conductivity is carried out through the Levenberg Marquardt method. The process is performed on simulated experimental data and mathematical model of the system with different frequencies. The geometry used is a copper coil that induces radiofrequency to a domain located in the center of the coil. Results: The estimation of electrical conductivity is obtained to different frequencies from radiofrequency hyperthermia therapy for cancer treatment by the Levenberg Marquardt method. Also, these results allow that by identifying the electrical conductivity of each patient. Conclusions: The estimation of physical properties in the application of cancer treatment is important, in this case with radiofrequency hyperthermia therapy, because it is possible to plan appropriate treatment, due to a better knowledge of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO: Cancer. www.who.int. Accessed 1 Oct 2019

  2. Rangel-Sosa, M.M., Aguilar-Córdova, E., Rojas-Martínez, A.: Immunotherapy and gene therapy as novel treatments for cancer. Colomb. medica 48, 138–147 (2017)

    Article  Google Scholar 

  3. Oun, R., Moussa, Y.E., Wheate, N.J.: The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47, 6645–6653 (2018)

    Article  Google Scholar 

  4. Palesh, O., Scheiber, C., Kesler, S., Mustian, K., Koopman, C., Schapira, L.: Management of side effects during and post-treatment in breast cancer survivors. Breast J. 24, 167–175 (2018)

    Article  Google Scholar 

  5. Curto, S.: Antenna development for radio frequency hyperthermia applications. Doctoral thesis. Dublin Institute of Technology. Technological University Dublin (2010)

    Google Scholar 

  6. Mallory, M., Gogineni, E., Jones, G.C., Greer, L., Simone, C.B.: Therapeutic hyperthermia: the old, the new, and the upcoming. Crit. Rev. Oncol. Hematol. 97, 56–64 (2016)

    Article  Google Scholar 

  7. Gas, P.: Study on interstitial microwave hyperthermia with multi-slot coaxial antenna. Génie biomédicale. 59, 215–224 (2014)

    Google Scholar 

  8. Vrba, D., Vrba, J., Rodrigues, D.B., Stauffer, P.: Numerical investigation of novel microwave applicators based on zero-order mode resonance for hyperthermia treatment of cancer. J. Franklin Inst. 354, 8734–8746 (2017)

    Article  Google Scholar 

  9. Guirado, N., Mart, J.C.: Hipertermia oncológica profunda conformada provocada por campos electromagnéticos no ionizantes Conformed deep oncologic hyperthermia caused by electromagnetic. Rev. Fis. Med. 19, 11–44 (2018)

    Google Scholar 

  10. Kurgan, E., Gas, P.: Estimation of Temperature Distribution Inside Tissues in External RF Hyperthermia. Prz. Elektrotechniczny 86, 100–102 (2010)

    Google Scholar 

  11. Gas, P.: Essential Facts on the History of Hyperthermia and their Connections with Electromedicine. Prz. Elektrotechniczny 87, 37–40 (2011)

    Google Scholar 

  12. Bermeo Varon, L.A., Orlande, H.R.B., Elicabe, G.: Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int. J. Therm. Sci. 98, 228–236 (2015)

    Article  Google Scholar 

  13. Eibner, S., et al.: Near Infrared Light Heating of Soft Tissue Phantoms Containing Nanoparticles. Eng. térmica. 13, 13–18 (2014)

    Google Scholar 

  14. Lamien, B., Bermeo Varon, L.A., Orlande, H.R.B., Eliçabe, G.E.: State Estimation in Bioheat Transfer : a Comparison of Particle Filter Algorithms. Int. J. Numer. Methods Heat Fluid Flow. 27, 1–53 (2017)

    Article  Google Scholar 

  15. Majchrzak, E., Paruch, M.: Numerical modelling of temperature field in the tissue with a tumor subject to the action of two external electrode. Sci. Res. Inst. Math. Comput. Sci. 1, 1–8 (2009)

    Google Scholar 

  16. Miaskowski, A., Sawicki, B., Krawczyk, A., Yamada, S.: The application of magnetic fluid hyperthermia to breast cancer treatment. Prz. Elektrotechniczny, 99–101 (2010)

    Google Scholar 

  17. Gas, P., Miaskowski, A.: Specifying the ferrofluid parameters important from the viewpoint of Magnetic Fluid Hyperthermia. Sel. Probl. Electr. Eng. Electron., 1–6 (2015)

    Google Scholar 

  18. Sun, J., Wang, W., Yue, Q.: Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Mater. 9, 231 (2016)

    Article  Google Scholar 

  19. Beck, J.V.: Sequential methods in parameter estimation. Michigan State University, East Lansing (1999)

    Google Scholar 

  20. Borzou, P., Ghaisari, J., Izadi, I., Gheisari, Y.: An iterative LMA method for parameter estimation in dynamic modeling of TGFβ pathway using ODE, pp. 1140–1144 (2019)

    Google Scholar 

  21. Madsen, K., Nielsen, H.., Tingleff, O.: Method for Non-Linear Least Squares Problems, pp. 24–29. Informatics and Mathematical Modelling Technical University of Denmark (2004)

    Google Scholar 

  22. Ghosh, S., Chattopadhyay, B.P., Roy, R.M., Mukherjee, J., Mahadevappa, M.: Estimation of echocardiogram parameters with the aid of impedance cardiography and artificial neural networks. Artif. Intell. Med. 96, 45–58 (2019)

    Article  Google Scholar 

  23. Huang, C.-H., Huang, C.-Y.: An inverse problem in estimating simultaneously the effective thermal conductivity and volumetric heat capacity of biological tissue. Appl. Math. Model. 31, 1785–1797 (2007)

    Article  Google Scholar 

  24. Gill, P.E., Murray, W.: Algorithms for the solution of the nonlinear least-squares problem. SIAM J. Numer. Anal. 15, 977–992 (1978)

    Article  MathSciNet  Google Scholar 

  25. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5–43 (2003)

    Article  Google Scholar 

  26. Tan, C., Xu, Y., Dong, F.: Determining the boundary of inclusions with known conductivities using a Levenberg-Marquardt algorithm by electrical resistance tomography. Meas. Sci. Technol. 22, 104005 (2011)

    Article  Google Scholar 

  27. Xu, Y., Dong, F., Tan, C.: Electrical resistance tomography for locating inclusions using analytical boundary element integrals and their partial derivatives. Eng. Anal. Bound. Elem. 34, 876–883 (2010)

    Article  MathSciNet  Google Scholar 

  28. Comsol Multiphysics: Comsol Multiphysics Modelling Software. www.comsol.com. Accessed 8 Oct 2019

  29. Hasgall, P.A., Neufeld, E., Gosselin, C., Klingenb, M.A., Kuster, N.: IT’IS Database for thermal and electromagnetic parameters of biological tissues (2015). www.itis.ethz.ch/database

  30. Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. London. 155, 459–512 (1865)

    Article  Google Scholar 

  31. Ozisik, N.: Heat Conduction. Wiley, New York (1993)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support provided by DGI of Universidad Santiago de Cali, Colombia, project No. 819-621118-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo A. Bermeo Varon .

Editor information

Editors and Affiliations

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López Perez, J.I., Serna Maldonado, R.D., Bermeo Varon, L.A., Castillo García, J.F. (2020). Estimation of Electrical Conductivity from Radiofrequency Hyperthermia Therapy for Cancer Treatment by Levenberg Marquardt Method. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-42531-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42531-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42530-2

  • Online ISBN: 978-3-030-42531-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics