Skip to main content

Therapy, Orthotics and Assistive Devices for Osteogenesis Imperfecta

  • Chapter
  • First Online:
Osteogenesis Imperfecta

Abstract

Therapy is an important component in the care of the individuals who have osteogenesis imperfecta (OI). There are different areas of emphasis based on where the services are rendered. This chapter reviews our approach to therapy in each environment, functional measures related to OI, orthotics, and assistive devices for enhanced mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Netherlands)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Netherlands)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 108.99
Price includes VAT (Netherlands)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 152.59
Price includes VAT (Netherlands)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marr C, Seasmon A, Bishop N. Managing the patient with osteogenesis imperfecta: a multidisciplinary approach. J Multidiscip Healthc. 2017;10:145–55.

    Article  Google Scholar 

  2. Neonatal and Nursery Care: Osteogenesis Imperfecta Foundation. http://www.oif.org/site/DocServer/Neonatal_and_Nursery_Care__Pdf_for_page_12.0_.pdf?docID=7362.

  3. Aagaard H, Uhrenfeldt L, Spliid M, Fegran L. Parents’ experiences of transition when their infants are discharged from the Neonatal Intensive Care Unit: a systematic review protocol. JBI Database System Rev Implement Rep. 2015;13:123–32. https://doi.org/10.11124/jbisrir-2015-2287.

    Article  PubMed  Google Scholar 

  4. Bass JL. The infant car seat challenge: determining and managing an “abnormal” result. Pediatrics. 2010;125:597.

    Article  Google Scholar 

  5. Ireland PJ, Donachey S, McGill J, Zankl A, Ware RS, Pacey V, Ault J, Savarirayan R, Sillence D, Thompson E, Townshed S, Johnston LM. Development in children with achondroplasia: a prospective clinical cohort study. Dev Med Child Neurol. 2012;54:532–7.

    Article  Google Scholar 

  6. Pauli RM, Breed AM, Horton VK, Glinski LP, Reiser CA. Prevention of fixed, angular kyphosis in achondroplasia. J Pediatr Orthop. 1997;17:726–33.

    CAS  PubMed  Google Scholar 

  7. Shirley ED, Ain MC. Achondroplasia: manifestations and treatment. J Am Acad Orthop Surg. 2009;17:231–41.

    Article  Google Scholar 

  8. Takken T, Terlingen HC, Helders PJ, Pruijs H, van Der Ent CK, Engelbert RH. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I. J Pediatr. 2004;145:813–8.

    Article  Google Scholar 

  9. Brizola E, Staub AL, Felix TM. Muscle strength, joint range of motion, and gait in children and adolescents with osteogenesis imperfecta. Pediatr Phys Ther. 2014;26:245–52.

    Article  Google Scholar 

  10. Van Brussel M, Takken T, Uiterwaal CS, et al. Physical training in children with osteogenesis imperfecta. J Pediatr. 2008;152:111–6.

    Article  Google Scholar 

  11. Mueller B, et al. Consensus statement on physical rehabilitation in children and adolescents with osteogenesis imperfecta. Orphanet J Rare Dis. 2018;13:158. https://doi.org/10.1186/s13023-018-0905-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dahan-Oliel N, Oliel S, Tsmicalis A, et al. Quality of life in osteogenesis imperfecta: a mixed-methods systemic review. Am J Med Genet A. 2016;170A:62–76.

    Article  CAS  Google Scholar 

  13. Cintas HL, Siegel KL, Furst GP, Gerber LH. Brief assessment of motor function: reliability and concurrent validity of the gross motor scale. Am J Phys Med Rehabil. 2003;82:33–41.

    Article  Google Scholar 

  14. Bayley N. Bayley scales of infant and toddler development. 3rd ed. Pearson Education Limited: San Antonio; 2005.

    Google Scholar 

  15. Deitz JC, Kartin D, Kopp K. Review of the Bruininks-Oseretsky test of motor proficiency, second edition (BOT-2). J Phys Occup Ther Pediatr. 2009;27:87–102.

    Article  Google Scholar 

  16. Ruck-Gibis J, Plotkin H, Hanley J, Wood-Dauphinee S. Reliability of the gross motor function measure for children with osteogenesis imperfecta. Pediatr Phys Ther. 2001;13:10–7.

    Article  CAS  Google Scholar 

  17. Engelbert RH, Kooijmans FT, van Riet AM, Feitsma TM, Uiterwaal CS, Helders PJ. Relationship between generalized joint hypermobility and motor development. Pediatr Phys Ther. 2005;17:258–63.

    Article  CAS  Google Scholar 

  18. Wuang YP, Su CY, Huang MH. Psychometric comparisons of three measures for assessing motor functions in preschoolers with intellectual disabilities. J Intellect Disabil Res. 2012;56:567–78.

    Article  CAS  Google Scholar 

  19. Davies PL, Soon PL, Young M, Clausen-Yamaki A. Validity and reliability of the school function assessment in elementary school students with disabilities. Phys Occup Ther Pediatr. 2004;24:23–43.

    Article  Google Scholar 

  20. Kerr GH, Harvey A, et al. The functional mobility scale (FMS). J Pediatr Orthop. 2004;24(5):514–20.

    Article  Google Scholar 

  21. Cohen JS, Biesecker B. Quality of life in rare genetic conditions: a systematic review of the literature. Am J Med Genet. 2010;152A:1136–56.

    Article  Google Scholar 

  22. Haley SM, Coster WJ, Ludlow LH, et al. Pediatric evaluation of disability inventory (PEDI): development, standardization and administration manual. Boston: New England Medical Centre Hospitals; 1992.

    Google Scholar 

  23. Haley SM, Coster WJ, Dumas HM, et al. Accuracy and precision of the pediatric evaluation or disability inventory computer adaptive tests (PEDI-CAT). Dev Med Child Neurol. 2011;53(12):100–6.

    Article  Google Scholar 

  24. Anaby D, Law M, Coster W, et al. The mediating role of the environment in explaining participation of children and youth with and without disabilities across home, school, and community. Arch Phys Med Rehabil. 2014;95:908–17.

    Article  Google Scholar 

  25. Daltroy LH, Liang MH, Fossel AH, Goldberg MJ. The POSNA pediatric musculoskeletal functional health questionnaire: report on reliability, validity, and sensitivity to change. Pediatric outcomes instrument development group. Pediatric orthopaedic society of North America. J Pediatr Orthop. 1998;18(5):561–71.

    Article  CAS  Google Scholar 

  26. Sousa T, Bompadre V, White K. Musculoskeletal functional outcomes in children with osteogenesis imperfecta: associations with disease severity and pamidronate therapy. J Ped Orthop. 2014;34(1):118–22.

    Article  Google Scholar 

  27. PROMIS: http://www.healthmeasures.net/index.php?option=com_content&view=category&layout=blog&id=147&Itemid=806.

  28. Tosi L, Floor MK, Dollar CM, Gillies AP, et al. Assessing disease experience across the life span for individuals with osteogenesis imperfecta: challenges and opportunities for patient-reported outcomes (PROs) measurement: a pilot study. Orphanet J Rare Dis. 2019;14(1):23. https://doi.org/10.1186/s13023-019-1004-x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bohonnan RW, Bubela D, Magasi S, et al. Comparison of walking performance over the first 2 minutes and the full 6 minutes of the six- minute walk test. BMC Res Notes. 2014;25(7):269. https://doi.org/10.1186/1756-0500-7-269.

    Article  Google Scholar 

  30. Bohonnan RW, Wang YC, Bubela D, Gershon RC. Normative two-minute walk test distances for boys and girls 3 to 17 years of age. Phys Occup Ther Pediar. 2018;38(1):39–45.

    Article  Google Scholar 

  31. Klepper SE, Muir N. Reference values on the 6-minute walk test for children living in the United States. Pediatr Phys Ther. 2011;23(1):32–40.

    Article  Google Scholar 

  32. Lammers AE, Hislop AA, et al. The 6- minute walk test: normal values for children 4–11 years of age. Arch Dis Child. 2007;93(6):464–8.

    Article  Google Scholar 

  33. Bongers BC, Rijks EB, Harsevoort AG, Takken T, van Brussel M. 10-m shuttle ride test in youth with osteogenesis imperfecta who use wheelchairs: feasibility, reproducibility, and physiological responses. Phys Ther. 2016;96(5):679–86.

    Article  Google Scholar 

  34. Sears ED, Chung KC. Validity and responsiveness of the Jebsen-Taylor hand function test. J Hand Surg Am. 2010;35(1):30–7.

    Article  Google Scholar 

  35. Condon C, Cremin K. Static balance norms in children. Physiother Res Int. 2014;19(1):1. https://doi.org/10.1002/pri.1549.

    Article  PubMed  Google Scholar 

  36. Weingarten G, Lieberstein M, Itzkowitz A, Vialu C, Doyle M, Kaplan SL. Timed floor to stand-natural: reference data for school age children. Pediatr Phys Ther. 2016;28(1):71–6.

    Article  Google Scholar 

  37. Williams EN, Carroll SG, et al. Investigation of the timed “Up & Go” test in children. Dev Med Child Neurol. 2005;47(8):518–24.

    Article  Google Scholar 

  38. Itzkowitz A, Kaplan S, Doyle M, Weingarten G, Lieberstein M, Covino F, Vialu C. Timed up and go: reference data for children who are school age. Pediatr Phys Ther. 2016;28(2):239–46.

    Article  Google Scholar 

  39. Podsiadlo D, Richardson S. The timed Up & Go: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maureen Donohoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donohoe, M. (2020). Therapy, Orthotics and Assistive Devices for Osteogenesis Imperfecta. In: Kruse, R. (eds) Osteogenesis Imperfecta. Springer, Cham. https://doi.org/10.1007/978-3-030-42527-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42527-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42526-5

  • Online ISBN: 978-3-030-42527-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics