Skip to main content

The Transformation of the Modelling & Simulation of Systems for the Training of the CAF: Design Requirements and New Functionalities

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1193))

Included in the following conference series:

  • 923 Accesses

Abstract

The rapid evolution of the technologies applied in modelling and simulation (M&S) of the operational activities of military systems has made simulation platforms fundamental. In the case of the combat air forces (CAF), the simulators mission so far has been the initial and advanced training of pilots in offensive and defensive air operations. A high operational hybridization between the real and the virtual has been achieved, incorporating the pilot’s tactical-operational behaviour in air operations that reproduce circumstances of extreme hostility and lethality, adjusted to the effort that the aircraft would experience in a real flight, and applying the latest digital technologies. Yet the development effort has focused exclusively on comprehensive training solutions. However, the strategic development vector of M&S systems for CAF presents a much more ambitious spectrum, which transcends training and can become the core of the operational and logistic structures of the military forces in the future. This paper analyzes the main aspects that have conditioned the transition from the approach of the human-computer interaction (HCI) to the design of the user experience (UX), as well as the design requirements necessary for the development of the organizational architecture LVC-AI of M&S systems for CAF, and new functionalities beyond training systems. In this line, two examples of strategic development of these new functionalities in the field of logistics and in the operational field are developed. First, the case of obtaining, applying and managing logistic support intelligence related to the simulated effort of simulated hostile air operations and adverse weather conditions. Second, the case of the transformation of the LVC simulation platform into a real cabin on the ground, transforming the fighter aircraft into a remote pilot aircraft (RPA) capable of operating alternately in a conventional or remote way.

M. A. Fernández-Villacañas Marín — PhD Researcher and International Consultant in Logistics & Management, Associate Professor on the Technical University of Madrid, and Colonel of the Spanish Air Force (R).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayer, R.E.: Thirty years of research on online learning. Appl. Cognit. Psychol. 33(2), 152–159 (2019)

    Article  Google Scholar 

  2. Rodríguez, M.: La teoría del aprendizaje significativo: una revisión aplicable a la escuela actual. Revista Electrónica de Investigación e Innovación Educativa y Socioeducativa, Universitat de les Illes Balears, Spain, 3(1) (2011)

    Google Scholar 

  3. González, C.S., Blanco, F.: Emociones con videojuegos: Incrementando la motivación para el aprendizaje. Videojuegos: una herramienta educativa del “homo digitalis”. Revista Electrónica Teoría de la Educación: Educación y Cultura en la Sociedad de la Información, Universidad de Salamanca Spain, 9(3) (2008)

    Google Scholar 

  4. Gómez, M.A., Gómez, P.P., González, P.A.: Aprendizaje Activo en Simulaciones Interactivas. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, Asociación Española para la Inteligencia Artificial, Valencia, España (2007)

    Google Scholar 

  5. Contreras, G.A., García, R., Ramírez, M.S.: Uso de simuladores como recurso digital para la transferencia de conocimiento. Apertura, Revista innovación educativa, Universidad de Guadalajara, México, 2(1), April 2010

    Google Scholar 

  6. Mason, G.S., Shuman, T.R., Cook, K.E.: Comparing the effectiveness of an inverted classroom to a traditional classroom in an upper-division engineering course. IEEE Trans. Educ. 56(4), 430–435 (2013)

    Article  Google Scholar 

  7. Ramírez, D., Macías, M.: Solving material balance problems at unsteady state using a remote laboratory in classroom. In: 120th ASEE Annual Conference & Education. American Society for Engineering Education, Atlanta (2013)

    Google Scholar 

  8. Santos, M.E., León, M.: El internet como herramienta de investigación en el Aprendizaje Significativo. Revista Internacional en Educación en Ingeniería 4(1), 16–23 (2011)

    Google Scholar 

  9. Ramírez, R.: Capacitación con simuladores de vuelo para pilotos de la fuerza aérea en un ambiente de aprendizaje combinado. Tesis para obtener el grado de: Maestría en Tecnología Educativa, Tecnológico de Monterrey, México (2016)

    Google Scholar 

  10. Prats, M.: Prácticas docentes con simuladores de vuelo. A: II Jornadas de Innovación universitaria: el reto de la convergencia europea. Universidad Europea de Madrid, Madrid, Spain (2005)

    Google Scholar 

  11. Villacís, C., et al.: Mathematical models applied in the design of a flight simulator for military training. In: Rocha, Á., Guarda, T. (eds.) MICRADS 2018. SIST, vol. 94, pp. 43–57. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78605-6_4

    Chapter  Google Scholar 

  12. Ejército del Aire de España: Combate aéreo simulado. Revista Española de Defensa Nº 283, Ministerio de Defensa de España, Madrid, Spain, April 2012

    Google Scholar 

  13. Preámbulo de Editorial sobre Sistemas de Simulación: Simulación: la realidad más barata. Revista Española de Defensa Nº 283, Ministerio de Defensa de España, Madrid, Spain, April 2012

    Google Scholar 

  14. Kasim, B., et al.: Modeling and simulation as a service for joint military space operations simulation. J. Def. Model. Simul. Appl. Methodol. Technol. (2019). https://doi.org/10.1177/1548512919882499. SAGE

  15. Freeman, J., Zachary, W.: Intelligent tutoring for team training: lessons learned from US military research. In: Johnston, J. (ed.) Building Intelligent Tutoring Systems for Teams (Research on Managing Groups and Teams), vol. 19. Emerald Publishing Limited, Bingley (2018)

    Google Scholar 

  16. Aronsson, S., et al.: Supporting after action review in simulator mission training: co-creating visualization concepts for training of fast-jet fighter pilots. J. Def. Model. Simul. Appl. Methodol. Technol. 16, 219–231 (2019)

    Google Scholar 

  17. Källström, J., Heintz, F.: Multi-agent multi-objective deep reinforcement learning for efficient and effective pilot training. In: Proceedings of the 10th Aerospace Technology Congress, Stockholm, Sweden, 8–9 October 2019

    Google Scholar 

  18. Hill, R.R., et al.: Open challenges in building combat simulation systems to support test, analysis and training. In: Proceedings of the 2018 Winter Simulation Conference, Gothenburg, Sweden, 09–12 December 2018

    Google Scholar 

  19. Martín, M.A.: Introducción del Dossier Simulación. Revista de Aeronáutica y Astronáutica, Nº 843, Ejército del Aire de España, Madrid, Spain, May 2015

    Google Scholar 

  20. Saldaña, J.D.: La simulación de caza: El Eurofighter y el ASTA. Revista de Aeronáutica y Astronáutica Nº 843, Ejército del Aire de España, Madrid, Spain, May 2015

    Google Scholar 

  21. Saldaña, J.D.: Reflexiones del entrenamiento en simulador. Revista de Aeronáutica y Astronáutica Nº 843, Ejército del Aire de España, Madrid, Spain, May 2015

    Google Scholar 

  22. García-Mecerreyes, S.: Contribución de la psicología aeronáutica aplicada al ASTA. Revista de Aeronáutica y Astronáutica Nº 843, Ejército del Aire de España, Madrid, Spain, May 2015

    Google Scholar 

  23. Human-Computer Interaction (HCI): Interaction Design Foundation. https://www.interaction-design.org/literature/topics/human-computer-interaction/. Accessed 06 Oct 2019

  24. Liu, C., et al.: Considerations on multimodal human-computer interaction. In: Proceedings of the 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China (2018)

    Google Scholar 

  25. Chapter 2: Human-Computer Interaction. ACM SIGCHI - Resources HCI Bibliography. http://www.acm.org/sigchi/cdg/cdg2.html/. Accessed 06 Oct 2019

  26. Benyon, D.: Designing User Experience: A Guide to HCI, UX and Interaction Design, 4th edn. Pearson, London (2019)

    Google Scholar 

  27. The Disciplines of User Experience Design. Made by envis precisely GmbH 2009, Redesign 2013. https://visual.ly/community/infographic/computers/disciplines-user-experience-design. Accessed 31 January 2020

  28. User Experience (UX) Design. Interaction Design Foundation. https://wwwinteraction-design.org/literature/topics/topics/ux-design/. Accessed 06 Oct 2019

  29. Miller, B.W., Lin, S.W.: Industrial internet: towards interoperability and composability. IIC J. Innov. Ind. Internet Consort. (2016). https://www.iiconsortium.org/news/joi-articles/2016-June-Industrial-Internet-Towards-Interoperability-and-Composability.pdf. 2nd Ed. June 2016

  30. Taylor, S.J.E., et al.: Grand challenges for modeling and simulation: simulation everywhere - from cyberinfrastructure to clouds to citizens. Simulation 91(7), 648–665 (2015)

    Article  Google Scholar 

  31. Woong, T., Kim, K., Rabelo, L., Lee, G.: An agile roadmap for live, virtual and constructive-integrating training architecture (LVC-ITA): a case study using a component based integrated simulation engine (AddSIM). In: Proceedings of the MODSIM World Conference (2015)

    Google Scholar 

  32. Zeigler, B.P., Seo, C.H.: DEVS namespace for interoperable DEVS/SOA. In: Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G. (eds.) Proceedings of the 2009 Winter Simulation Conference (2009)

    Google Scholar 

  33. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd edn. Academic Press, New York (2000)

    Google Scholar 

  34. Pope, T.M.: A cost-benefit analysis of pilot training next. Thesis for Degree of Master of Science in Logistics & Supply Chain Management, Air Force Institute of Technology USAF Air University, March 2019

    Google Scholar 

  35. Live, virtual, and constructive. In: Wikipedia, The Free Encyclopedia (n.d). https://en.wikipedia.org/wiki/Live,_virtual,_and_constructive. Accessed 31 Jan 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Antonio Fernández-Villacañas Marín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández-Villacañas Marín, M.A. (2020). The Transformation of the Modelling & Simulation of Systems for the Training of the CAF: Design Requirements and New Functionalities. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1193. Springer, Cham. https://doi.org/10.1007/978-3-030-42517-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42517-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42516-6

  • Online ISBN: 978-3-030-42517-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics