Skip to main content

Abstract

A universal solution for food waste may not be practical as it is related to a complex mixture of economic inequality, policy failure, and lack of awareness. On the other hand, energy costs are steadily rising. Therefore, only through sustainable renewable drying technologies the crisis of food waste can be ameliorated. The high energy requirement of drying is one of the most predominant challenges towards achieving food security and economic sustainability. Therefore, this chapter proposes some improved drying techniques that can operate on renewable energy. Extensive discussion is done on their working principle, efficiency, effectiveness, and the quality of the dried product. The chapter starts by classifying the drying technologies to put the entire drying practice into perspective. Then the chapter introduces ten sustainable drying technologies for developing countries. Feasibility analysis was performed on the drying techniques which are currently in development stage. Each developing country has its unique energy economy and geographical features. Therefore, an in-depth analytical comparison among all the proposed dryers were made at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.U.H. Joardder, M.H. Masud, Food Preservation in Developing Countries: Challenges and Solutions, Springer (2019)

    Google Scholar 

  2. M.U.H. Joardder, M.H. Masud, Challenges and mistakes in food preservation, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 175–198 (2019)

    Google Scholar 

  3. M.U.H. Joardder, M.H. Masud, Possible solution of food preservation techniques, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 199–218 (2019)

    Google Scholar 

  4. M.M. Rahman, M.U.H. Joardder, M.I.H. Khan, N.D. Pham, M.A. Karim, Multi-scale model of food drying: Current status and challenges. Crit. Rev. Food Sci. Nutr. 58(5), 858–876 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. M.M. Rahman, Y.T. Gu, M.A. Karim, Development of realistic food microstructure considering the structural heterogeneity of cells and intercellular space. Food Struct. 15, 9–16 (2018)

    Article  Google Scholar 

  6. M.M. Rahman, M.U.H. Joardder, A. Karim, Non-destructive investigation of cellular level moisture distribution and morphological changes during drying of a plant-based food material. Biosyst. Eng. 169, 126–138 (2018)

    Article  Google Scholar 

  7. M.U.H. Joardder, M.A. Karim, Development of a porosity prediction model based on shrinkage velocity and glass transition temperature. Dry. Technol., 1–17 (2019)

    Google Scholar 

  8. M.U.H. Joardder, C. Kumar, M.A. Karim, Prediction of porosity of food materials during drying: Current challenges and directions. Crit. Rev. Food Sci. Nutr. 58(17), 2896–2907 (2018)

    Article  PubMed  Google Scholar 

  9. A.S. Mujumdar, A.S. Menon, Drying of solids: Principles, classification, and selection of dryers. Handb. Ind. Dry. 1, 1–39 (1995)

    Google Scholar 

  10. A.S. Mujumdar, Classification and selection of industrial dryers. Mujumdar’s Pract. Guid. to Ind. Dry. Princ. Equip. New Dev. Bross. Canada Exergex Corp., 23–36 (2000)

    Google Scholar 

  11. S.A. Klein, Calculation of flat-plate collector loss coefficients. Sol. Energy 17, 79 (1975)

    Article  Google Scholar 

  12. M.A. Basunia, T. Abe, Thin-layer solar drying characteristics of rough rice under natural convection. J. Food Eng. 47(4), 295–301 (2001)

    Article  Google Scholar 

  13. P. Barnwal, G.N. Tiwari, Grape drying by using hybrid photovoltaic-thermal (PV/T) greenhouse dryer: An experimental study. Sol. Energy 82(12), 1131–1144 (2008)

    Article  CAS  Google Scholar 

  14. B.M.A. Amer, M.A. Hossain, K. Gottschalk, Design and performance evaluation of a new hybrid solar dryer for banana. Energy Convers. Manag. 51(4), 813–820 (2010)

    Article  Google Scholar 

  15. S.C. Bhattacharya, T. Ruangrungchaikul, and H.L. Pham, Chapter 240 – Design and Performance of a Hybrid Solar/Biomass Energy Powered Dryer for Fruits and Vegetables, A.A.M.B.T.-W.R. E.C. V.I. Sayigh, Ed. Oxford: Pergamon, 1161–1164 (2000)

    Google Scholar 

  16. M.A. Karim, E. Perez, Z.M. Amin, Mathematical modelling of counter flow v-grove solar air collector. Renew. Energy 67, 192–201 (2014)

    Article  Google Scholar 

  17. M.A. Karim, M.N.A. Hawlader, Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31(4), 452–470 (2006)

    Article  CAS  Google Scholar 

  18. M. Islam, S. Miller, P. Yarlagadda, A. Karim, Investigation of the effect of physical and optical factors on the optical performance of a parabolic trough collector. Energies 10(11), 1907 (2017)

    Article  Google Scholar 

  19. M. Islam, M.A. Karim, S.C. Saha, S. Miller, P.K.D.V. Yarlagadda, Development of empirical equations for irradiance profile of a standard parabolic trough collector using Monte Carlo ray-tracing technique, in Advanced Materials Research, 860,180–190 (2014)

    Google Scholar 

  20. M. Islam, P. Yarlagadda, A. Karim, Effect of the orientation schemes of the energy collection element on the optical performance of a parabolic trough concentrating collector. Energies 12(1), 128 (2019)

    Article  CAS  Google Scholar 

  21. D. Heim, P. Klemm, Numerical solution of TIM-PCM solar thermal storage system with ESP-r. Res. Build. Phys., 683–690 (2003)

    Google Scholar 

  22. K.S. Ong, Thermal performance of solar air heaters: Mathematical model and solution procedure. Sol. Energy 55(2), 93–109 (1995)

    Article  CAS  Google Scholar 

  23. F.K. Forson, M.A.A. Nazha, H. Rajakaruna, Experimental and simulation studies on a single pass, double duct solar air heater. Energy Convers. Manag. 44(8), 1209–1227 (2003)

    Article  Google Scholar 

  24. M.U.H. Joardder, M.H. Masud, Feasibility of advance technologies, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 219–236 (2019)

    Google Scholar 

  25. L.M. Bal, S. Satya, S.N. Naik, Solar dryer with thermal energy storage systems for drying agricultural food products: A review. Renew. Sust. Energ. Rev. 14(8), 2298–2314 (2010)

    Article  Google Scholar 

  26. M.A. Karim, Experimental investigation of a stratified chilled-water thermal storage system. Appl. Therm. Eng. 31(11–12), 1853–1860 (2011)

    Article  Google Scholar 

  27. M.A. Karim, O. Arthur, P.K.D.V. Yarlagadda, M. Islam, M. Mahiuddin, Performance investigation of high temperature application of molten solar salt nanofluid in a direct absorption solar collector. Molecules 24(2), 285 (2019)

    Article  PubMed Central  CAS  Google Scholar 

  28. A. Karim, A. Burnett, S. Fawzia, Investigation of stratified thermal storage tank performance for heating and cooling applications. Energies 11(5), 1049 (2018)

    Article  CAS  Google Scholar 

  29. O. Arthur, M.A. Karim, An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications. Renew. Sust. Energ. Rev. 55, 739–755 (2016)

    Article  CAS  Google Scholar 

  30. A.J. Mahmood, L.B.Y. Aldabbagh, F. Egelioglu, Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer. Energy Convers. Manag. 89, 599–607 (2015)

    Article  Google Scholar 

  31. P. Naphon, On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renew. Energy 30(9), 1345–1357 (2005)

    Article  Google Scholar 

  32. H. Yeh, T.-T. Lin, Efficiency improvement of flat-plate solar air heaters. Energy 21(6), 435–443 (1996)

    Article  Google Scholar 

  33. A.E. Kabeel, A. Khalil, S.M. Shalaby, M.E. Zayed, Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Convers. Manag. 113, 264–272 (2016)

    Article  CAS  Google Scholar 

  34. J.M. Troeger, J.L. Butler, Simulation of solar peanut drying. Trans. ASAE 22(4), 906–911 (1979)

    Article  Google Scholar 

  35. H.P. Garg, V.K. Sharma, R.B. Mahajan, A.K. Bhargave, Experimental study of an inexpensive solar collector cum storage system for agricultural uses. Sol. Energy 35(4), 321–331 (1985)

    Article  Google Scholar 

  36. S.O. Enibe, Performance of a natural circulation solar air heating system with phase change material energy storage. Renew. Energy 27(1), 69–86 (2002)

    Article  Google Scholar 

  37. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 45(9), 1597–1615 (2004)

    Article  CAS  Google Scholar 

  38. V.V. Tyagi, N.L. Panwar, N.A. Rahim, R. Kothari, Review on solar air heating system with and without thermal energy storage system. Renew. Sust. Energ. Rev. 16(4), 2289–2303 (2012)

    Article  CAS  Google Scholar 

  39. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 13(2), 318–345 (2009)

    Article  CAS  Google Scholar 

  40. H.E.S. Fath, Thermal performance of a simple design solar air heater with built-in thermal energy storage system. Energy Convers. Manag. 36(10), 989–997 (1995)

    Article  CAS  Google Scholar 

  41. E.-B.S. Mettawee, G.M.R. Assassa, Experimental study of a compact PCM solar collector. Energy 31(14), 2958–2968 (2006)

    Article  Google Scholar 

  42. V.V. Tyagi, A.K. Pandey, S.C. Kaushik, S.K. Tyagi, Thermal performance evaluation of a solar air heater with and without thermal energy storage. J. Therm. Anal. Calorim. 107(3), 1345–1352 (2012)

    Article  CAS  Google Scholar 

  43. M.M. Alkilani, K. Sopian, S. Mat, M.A. Alghoul, Output air temperature prediction in a solar air heater integrated with phase change material. Eur. J. Sci. Res. 27(3), 334–341 (2009)

    Google Scholar 

  44. A.A. El-Sebaii, S. Aboul-Enein, M.R.I. Ramadan, S.M. Shalaby, B.M. Moharram, Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy 36(2), 1076–1086 (2011)

    Article  Google Scholar 

  45. A.A. El-Sebaii, S. Aboul-Enein, M.R.I. Ramadan, S.M. Shalaby, B.M. Moharram, Thermal performance investigation of double pass-finned plate solar air heater. Appl. Energy 88(5), 1727–1739 (2011)

    Article  Google Scholar 

  46. A. Ayensu, V. Asiedu-Bondzie, Solar drying with convective self-flow and energy storage. Sol. Wind Technol. 3(4), 273–279 (1986)

    Article  Google Scholar 

  47. G.N. Tiwari, A.K. Singh, P.S. Bhatia, Experimental simulation of a grain drying system. Energy Convers. Manag. 35(5), 453–458 (1994)

    Article  Google Scholar 

  48. P.M. Chauhan, C. Choudhury, H.P. Garg, Comparative performance of coriander dryer coupled to solar air heater and solar air-heater-cum-rockbed storage. Appl. Therm. Eng. 16(6), 475–486 (1996)

    Article  Google Scholar 

  49. T. Ziegler, I.-G. Richter, R. Pecenka, Desiccant grain applied to the storage of solar drying potential. Dry. Technol. 17(7–8), 1411–1427 (1999)

    Article  Google Scholar 

  50. D.B. Jani, M. Mishra, P.K. Sahoo, Solid desiccant air conditioning–a state of the art review. Renew. Sust. Energ. Rev. 60, 1451–1469 (2016)

    Article  CAS  Google Scholar 

  51. D. Jain, Modeling the performance of the reversed absorber with packed bed thermal storage natural convection solar crop dryer. J. Food Eng. 78(2), 637–647 (2007)

    Article  Google Scholar 

  52. A. Madhlopa, G. Ngwalo, Solar dryer with thermal storage and biomass-backup heater. Sol. Energy 81(4), 449–462 (2007)

    Article  Google Scholar 

  53. P. Muffler, R. Cataldi, Methods for regional assessment of geothermal resources. Geothermics 7(2–4), 53–89 (1978)

    Article  Google Scholar 

  54. P.F.A. Ogola, The Power to Change: Creating Lifeline and Mitigation-Adaptation Opportunities through Geothermal Energy Utilisation, University of Iceland, (2013)

    Google Scholar 

  55. N.C. Vasquez, R.O. Bernardo, R.L. Cornelio, Industrial uses of geothermal energy a framework for application in a developing country. Geothermics 21(5–6), 733–743 (1992)

    Article  Google Scholar 

  56. S. Arason, The drying of fish and utilization of geothermal energy; the Icelandic experience. In International Geothermal Conference, Reykjavík, September (2003)

    Google Scholar 

  57. K. Popovski, K. Dimitrov, B. Andrejevski, S. Popovska, Geothermal rice drying unit in Kotchany, Macedonia. Geothermics 21(5–6), 709–716 (1992)

    Article  Google Scholar 

  58. N. Andritsos, P. Dalampakis, N. Kolios, Use of geothermal energy for tomato drying. GHC Bull. 24(1) (2003)

    Google Scholar 

  59. M. Van Nguyen, S. Arason, M. Gissurarson, P. G. Pálsson, Uses of geothermal energy in food and agriculture opportunities for developing countries, Food And Agriculture Organization of The United Nations, Rome, (2015)

    Google Scholar 

  60. S. Popovska, D.S. Jayas, C.B. Singh, Drying of agricultural products with geothermal energy. Encycl. Earth Sci. Ser. Part 4, 231–232 (2011)

    Google Scholar 

  61. J.W. Lund, M.A. Rangel, Pilot fruit drier for the los Azufres geothermal field, Mexico, in Processing of the World Geothermal Congress, Florence, Italy, 18–31 (1995)

    Google Scholar 

  62. P. Mangi, Geothermal Resource Optimization: A Case of the Geothermal Health Spa and Demonstration Centre at the Olkaria Geothermal Project, Presented at Short Course VII on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 27 – Nov. 18, (2012)

    Google Scholar 

  63. K. Abdullah, I.B.P Gunadnya, Use of geothermal energy for drying and cooling purposes. In Proceedings World Geothermal Congress, 1–5, April (2010)

    Google Scholar 

  64. J.W. Lund, Direct heat utilization of geothermal resources worldwide 2005. ASEG Ext. Abstr. 2006(1), 1–15 (2006)

    Google Scholar 

  65. S. Björnsson, Geothermal Development and Research in Iceland, By National Energy Authority and Ministries of Industry and Commerce (2006)

    Google Scholar 

  66. J.W. Lund, D.H. Freeston, T.L. Boyd, Direct Utilization of Geothermal Energy 2010 Worldwide Review. Proceedings of the World Geothermal Congress. Horne (ed.), Int. Geotherm. Assoc. Nusa Dua, Bali, 25(4) (2010)

    Google Scholar 

  67. M.S. Uddin, M.H. Masud, S. Mandal, M. Morshed, Construction and performance study of underground assisted air heating and cooling system, in International Conference on Mechanical, Industrial and Materials Engineering, RUET, Rajshai, Bangladesh (2015)

    Google Scholar 

  68. L.F. Cabeza, A. Castell, C. Barreneche, A. De Gracia, A.I. Fernández, Materials used as PCM in thermal energy storage in buildings : A review. Renew. Sust. Energ. Rev. 15(3), 1675–1695 (2011)

    Article  CAS  Google Scholar 

  69. Y. Zhang, Research of Thermal Energy Storage Technology in the Solar Thermodynamic Power. Journal of Power and Energy Engineering, 4(07), 42 (2016)

    Google Scholar 

  70. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy conversion and management, 45(9–10), 1597–1615 (2004)

    Google Scholar 

  71. P. Suntivarakorn, S. Satmarong, C. Benjapiyaporn, S. Theerakulpisut, An experimental study on clothes drying using waste heat from split type air conditioner. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 3(5), 483–488 (2009)

    Google Scholar 

  72. R. Tuǧrul Oǧulata, Utilization of waste-heat recovery in textile drying. Appl. Energy 79(1), 41–49 (2004)

    Article  Google Scholar 

  73. H. Li, Q. Chen, X. Zhang, K.N. Finney, V.N. Sharifi, J. Swithenbank, Evaluation of a biomass drying process using waste heat from process industries: A case study. Appl. Therm. Eng. 35, 71–80 (2012)

    Article  Google Scholar 

  74. Y. Qin, H. Fu, J. Wang, M. Liu, J. Yan, Waste heat and water recovery characteristics of heat exchangers for dryer exhaust. Dry. Technol. 36(6), 709–722 (2018)

    Article  CAS  Google Scholar 

  75. T.M.I. Mahlia, L.W. Cheng, L.C.S. Salikka, C.L. Lim, M.H. Hasan, U. Hamdani, Drying garcinia atroviridis using waste heat from condenser of a split room air conditioner. Int. J. Mech. Mater. Eng. 7(2), 171–176 (2012)

    Google Scholar 

  76. J.W. MacArthur, E.W. Grald, Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data. Int. J. Refrig. 12(1), 29–41 (1989)

    Article  CAS  Google Scholar 

  77. J.W. MacArthur, Transient heat pump behaviour: A theoretical investigation. Int. J. Refrig. 7(2), 123–132 (1984)

    Article  Google Scholar 

  78. M. Alves-Filho, I. Stranmen, The application of heat pump in drying of biomaterials. Dry. Technol. 14(9), 2061–2090 (1996)

    Article  Google Scholar 

  79. S.J. Rossi, L.C. Neues, T.G. Kicokbusch, Thermodynamic and energetic evaluation of a heat pump applied to the drying of vegetables. Drying 92, 475–478 (1992)

    Google Scholar 

  80. A.A. Nassikas, C.B. Akritidis, A.S. Mujumdar, Close-cycle heat pump dryer using super heated steam: An application to paper drying. Drying 92, 1085–1098 (1992)

    Google Scholar 

  81. J.P. Meyer, G.P. Greyvenstein, The drying of grain with heat pumps in South Africa: A techno-economic analysis. Int. J. Energy Res. 16(1), 13–20 (1992)

    Article  CAS  Google Scholar 

  82. I. Strommen, K. Joseffsen, K. Kramer, Heat Pump Fluidised Bed Drying of Biologically Active Solutions, in Drying’94—Proceedings of the 9th International Drying Symposium, 1007–1014 (1994)

    Google Scholar 

  83. R.L. Mason, A.V. Blarcom, Drying macadamia nuts using a heat pump dehumidifier, in The Development and Application of Heat Pump Dryers. Seminar Papers, 1–7, 24th March, (1993)

    Google Scholar 

  84. C.G. Carrington, P. Bannister, An empirical model for a heat pump dehumidifier drier. Int. J. Energy Res. 20(10), 853–869 (1996)

    Article  CAS  Google Scholar 

  85. S. Prasertsan, P. Saen-Saby, Heat pump drying of agricultural materials. Dry. Technol. 16(1–2), 235–250 (1998)

    Article  Google Scholar 

  86. S.K. Chou, K.J. Chua, New hybrid drying technologies for heat sensitive foodstuffs. Trends Food Sci. Technol. 12(10), 359–369 (2001)

    Article  Google Scholar 

  87. U.S. Pal, M.K. Khan, S.N. Mohanty, Heat pump drying of green sweet pepper. Dry. Technol. 26(12), 1584–1590 (2008)

    Article  CAS  Google Scholar 

  88. S. Şevik, M. Aktaş, H. Doğan, S. Koçak, Mushroom drying with solar assisted heat pump system. Energy Convers. Manag. 72, 171–178 (2013)

    Article  Google Scholar 

  89. C.L. Hii, C.L. Law, S. Suzannah, Drying kinetics of the individual layer of cocoa beans during heat pump drying. J. Food Eng. 108(2), 276–282 (2012)

    Article  Google Scholar 

  90. Q. Shi, Y. Zheng, Y. Zhao, Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Convers. Manag. 71, 208–216 (2013)

    Article  Google Scholar 

  91. A.S. Mujumdar, Handbook of Industrial Drying, CRC press (2014)

    Google Scholar 

  92. B. Geeraert, Nato advance study institute series, series E. Appl. Sci. 1(15), 219 (1976)

    Google Scholar 

  93. C. Strumillo, R. Zylla, Drying’85, Mujumdar, AS, Elsevier Science, Amsterdam (1985)

    Google Scholar 

  94. D.J. Barr, C.G.J. Baker, Specialized drying systems (Vol. 196). Chapman & Hall: New York, (1997)

    Google Scholar 

  95. S. Prasertsan, P. Saen-Saby, Heat pump dryers: Research and development needs and opportunities. Dry. Technol. 16(1–2), 251–270 (1998)

    Article  Google Scholar 

  96. K.J. Chua, A.S. Mujundar, S.K. Chou, M.N.A. Hawlader, J.C. Ho, Heat pump drying of banana, guava and potatoes pieces: Effect of cyclical variations of air temperature on convective drying kinetics on color changes. Dry. Technol. 18, 907–936 (2000)

    Article  CAS  Google Scholar 

  97. O. Alves-Filho, I. Strommen, Performance and improvements in heat pump dryers. Drying 96, 405–415 (1996)

    Google Scholar 

  98. A.S. Mujumdar, S. Devahastin, Developments in Drying: Food Dehydration, vol 1, Kasetsart University Press, Bangkok, Thailand (1999)

    Google Scholar 

  99. A. Barati, M. Kokabi, M.H.N. Famili, Drying of gelcast ceramic parts via the liquid desiccant method. J. Eur. Ceram. Soc. 23(13), 2265–2272 (2003)

    Article  CAS  Google Scholar 

  100. J. W. Twidell, J. Muniba, T. Thornwa, The Strathclyde solar crop dryer: air heater, photovoltaic fan and desiccants, in Proceeding of ISES solar world congress, vol. 8, 55–60, (1993)

    Google Scholar 

  101. K. Nagaya, Y. Li, Z. Jin, M. Fukumuro, Low-temperature desiccant-based food drying system with airflow and temperature control. J. Food Eng. 75, 71–77 (2006)

    Article  CAS  Google Scholar 

  102. K.J. Chua, S.K. Chou, Low-cost drying methods for developing countries. Trends Food Sci. Technol. 14(12), 519–528 (2003)

    Article  CAS  Google Scholar 

  103. M.H. Masud, A.A. Ananno, P. Dabnichki, N. Ahmed, M. Mahjabeen, Prospect of Chicken litter as a source of sustainable energy, in Technologies for Manure Conversion and Recycling, Springer, in press (2020)

    Google Scholar 

  104. M.H. Masud, A.A. Ananno, P. Dabnichki, S. Hossain, S.A. Chowdhury, Anaerobic Co-digestion of Food Waste with Liquid Dairy Manure, in Technologies for Manure Conversion and Recycling, Springer, in press, (2020)

    Google Scholar 

  105. M.H. Masud, A.A. Ananno, A.M.E. Arefin, R. Ahamed, P. Das, M.U.H. Joardder, Perspective of biomass energy conversion in Bangladesh. Clean Techn. Environ. Policy 21(4) (2019)

    Google Scholar 

  106. C M. Van’t Land, Drying in the process industry. John Wiley & Sons. (2012)

    Google Scholar 

  107. M.U.H. Joardder, M.H. Masud, Food preservation techniques in developing countries, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 67–125 (2019)

    Google Scholar 

  108. M.H. Masud, T. Islam, M.U.H. Joardder, A.A. Ananno, P. Dabnichki, CFD analysis of a tube-in-tube heat exchanger to recover waste heat for food drying. Int. J. Energy Water Resour., 1–18 (2019)

    Google Scholar 

  109. M.H. Masud, M.T. Islam, A.A. Ananno, M.A. Ahmed, Towards a zero energy based food drying system by utilizing the waste heat, in International Conference on Engineering Research, Innovation and Education, Sylet, Bangladesh (2019)

    Google Scholar 

  110. A.M.E. Arefin, M.H. Masud, M.U.H. Joardder, M. Mourshed, F.R. Naim-Ul-Hasan, Waste heat recovery systems for internal combustion engines: A review, in 1st International Conference on Mechanical Engineering and Applied Science, At Military Institute of Science and Technology, Dhaka, 1–4 (2017)

    Google Scholar 

  111. M. Karvonen, R. Kapoor, A. Uusitalo, V. Ojanen, Technology competition in the internal combustion engine waste heat recovery: A patent landscape analysis. J. Clean. Prod. 112, 3735–3743 (2016)

    Article  CAS  Google Scholar 

  112. K. Tuck, Researcher aims to use waste heat to make cars more efficient, Boise State University (2013)

    Google Scholar 

  113. J.S. Jadhao, D.G. Thombare, Review on exhaust gas heat recovery for I.C. engine. Certif. Int. J. Eng. Innov. Technol. 9001(12), 2277–3754 (2008)

    Google Scholar 

  114. B.-T. Liu, K.-H. Chien, C.-C. Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 29(8), 1207–1217 (2004)

    Article  CAS  Google Scholar 

  115. R. Saidur, M. Rezaei, W.K. Muzammil, M.H. Hassan, S. Paria, M. Hasanuzzaman, Technologies to recover exhaust heat from internal combustion engines. Renew. Sust. Energ. Rev. 16(8), 5649–5659 (2012)

    Article  CAS  Google Scholar 

  116. A.V. Mehta, R.K. Gohil, J.P. Bavarva, B.J. Saradava, Waste heat recovery using Stirling engine. Int. J. Adv. Eng. Technol. 3, 305–310 (2012)

    Google Scholar 

  117. S.S. Mathapati, M. Gupta, S. Dalimkar, A study on automobile air-conditioning based on absorption refrigeration system using exhaust heat of a vehicle. Int. J. Eng. Res. Gen. Sci. 2(4), 80–86 (2014)

    Google Scholar 

  118. S.K. Maurya, S. Awasthi, S.A. Siddiqui, A cooling system for an automobile based on vapour absorption refrigeration cycle using waste heat of an engine. diesel engine 35, 30–40 (2014)

    Google Scholar 

  119. B.I. Ismail, W.H. Ahmed, Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Patents Electr. Electron. Eng. (Formerly Recent Patents Electr. Eng.) 2(1), 27–39 (2009)

    CAS  Google Scholar 

  120. C. Arzbaecher, K. Parmenter, E. Fouche, Industrial waste-heat recovery: Benefits and recent advancements in technology and applications, in Proceedings of the ACEEE, 1–2 (2007)

    Google Scholar 

  121. The Engineering ToolBox, Fuels Exhaust Temperatures, The Engineering ToolBox. (2017)

    Google Scholar 

  122. B. Peris, J. Navarro-Esbrí, F. Molés, A. Mota-Babiloni, Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry. Energy 85, 534–542 (2015)

    Article  CAS  Google Scholar 

  123. B.J. Cooper, H.J. Jung, J.E. Thoss, U.S. Patent No. 4,902,487. Washington, DC: U.S. Patent and Trademark Office (1990)

    Google Scholar 

  124. N.R. Nwakuba, S.N. Asoegwu, K.N. Nwaigwe, Energy requirements for drying of sliced agricultural products: A review. Agric. Eng. Int. CIGR J. 18(2), 144–155 (2016)

    Google Scholar 

  125. M.A. Billiris, T.J. Siebenmorgen, A. Mauromoustakos, Estimating the theoretical energy required to dry rice. J. Food Eng. 107(2), 253–261 (2011)

    Article  Google Scholar 

  126. G.S.V. Raghavan, T.J. Rennie, P.S. Sunjka, V. Orsat, W. Phaphuangwittayakul, P. Terdtoon, Overview of new techniques for drying biological materials with emphasis on energy aspects. Brazilian J. Chem. Eng. 22(2), 195–201 (2005)

    Article  CAS  Google Scholar 

  127. M.H. Masud, M. Nuruzzaman, R. Ahamed, A.A. Ananno, A.A. Tomal, Renewable energy in Bangladesh: current situation and future prospect. International Journal of Sustainable Energy, 39(2), 132–175 (2020)

    Google Scholar 

  128. S. Gunasekaran, T.L. Thompson, Optimal energy management in grain drying. Crit. Rev. Food Sci. Nutr. 25(1), 1–48 (1986)

    Article  CAS  PubMed  Google Scholar 

  129. M. Masud, M.U.H. Joardder, M.T. Islam, M.M. Hasan, M.M. Ahmed, Feasibility of utilizing waste heat in drying of plant-based food materials, in International conference on mechanical, industrial and materials engineering, RUET, Rajshahi, 500–503 (2017)

    Google Scholar 

  130. C. for E. Cooperation, North American Power Plant Air Emissions (2015)

    Google Scholar 

  131. A. Motevali, S. Minaei, M.H. Khoshtaghaza, H. Amirnejat, Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 36(11), 6433–6441 (2011)

    Article  Google Scholar 

  132. M.A. Karim, M.N.A. Hawlader, Performance evaluation of a v-groove solar air collector for drying applications. Appl. Therm. Eng. 26(1), 121–130 (2006)

    Article  CAS  Google Scholar 

  133. M.A. Karim, M. Hawlader, Development of solar air collectors for drying applications. Energy Convers. Manag. 45(3), 329–344 (2004)

    Article  Google Scholar 

  134. I.N. Simate, Optimization of mixed-mode and indirect-mode natural convection solar dryers. Renew. Energy 28(3), 435–453 (2003)

    Article  Google Scholar 

  135. F.K. Forson, M.A.A. Nazha, H. Rajakaruna, Modelling and experimental studies on a mixed-mode natural convection solar crop-dryer. Sol. Energy 81(3), 346–357 (2007)

    Article  Google Scholar 

  136. N. Duc Pham et al., Quality of plant-based food materials and its prediction during intermittent drying. Crit. Rev. Food Sci. Nutr. 59(8), 1197–1211 (2019)

    Article  PubMed  CAS  Google Scholar 

  137. N.D. Pham, W. Martens, M.A. Karim, M.U.H. Joardder, Nutritional quality of heat-sensitive food materials in intermittent microwave convective drying. Food Nutr. Res. 62 (2018)

    Google Scholar 

  138. M.U.H. Joardder, M. Mourshed, M.H. Masud, Bound water removal techniques, in State of Bound Water: Measurement and Significance in Food Processing, Springer, 93–118 (2019)

    Google Scholar 

  139. M.I.H. Khan, S.A. Nagy, M.A. Karim, Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Res. Int. 105, 772–781 (2018)

    Article  CAS  PubMed  Google Scholar 

  140. M.I.H. Khan, T. Farrell, S.A. Nagy, M.A. Karim, Fundamental understanding of cellular water transport process in bio-food material during drying. Sci. Rep. 8(1), 15191 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. M.I.H. Khan, M.U.H. Joardder, C. Kumar, M.A. Karim, Multiphase porous media modelling: A novel approach to predicting food processing performance. Crit. Rev. Food Sci. Nutr. 58(4), 528–546 (2018)

    Article  CAS  PubMed  Google Scholar 

  142. M.U.H. Joardder, C. Kumar, R.J. Brown, M.A. Karim, A micro-level investigation of the solid displacement method for porosity determination of dried food. J. Food Eng. 166, 156–164 (2015)

    Article  CAS  Google Scholar 

  143. M.U.H. Joardder, A. Karim, C. Kumar, Effect of temperature distribution on predicting quality of microwave dehydrated food. J. Mech. Eng. Sci. 5, 562–568 (2013)

    Article  Google Scholar 

  144. M.U.H. Joardder, A. Karim, C. Kumar, R.J. Brown, Determination of effective moisture diffusivity of banana using thermogravimetric analysis. Procedia Eng. 90, 538–543 (2014)

    Article  Google Scholar 

  145. C.A. Perussello, C. Kumar, F. de Castilhos, M.A. Karim, Heat and mass transfer modeling of the osmo-convective drying of yacon roots (Smallanthus sonchifolius). Appl. Therm. Eng. 63(1), 23–32 (2014)

    Article  Google Scholar 

  146. M.U.H. Joardder, M.H. Masud, Harmful side effects of food processing, in Food Preservation in Developing Countries: Challenges and Solutions, Springer, 153–173 (2019)

    Google Scholar 

  147. E. Maltini, D. Torreggiani, G. Bertolo, M. Stecchini, Recent developments in the production of shelf-stable fruit by osmosis, in Proceedings of 6th International Congress Food Science and Technology, 177–180 (1983)

    Google Scholar 

  148. M. Dalla Rosa, F. Giroux, Osmotic treatments (OT) and problems related to the solution management. J. Food Eng. 49(2–3), 223–236 (2001)

    Article  Google Scholar 

  149. Z. Welsh, C. Kumar, A. Karim, Preliminary investigation of the flow distribution in an innovative intermittent convective microwave dryer (IMCD). Energy Procedia 110, 465–470 (2017)

    Article  Google Scholar 

  150. Z. Welsh, M.J. Simpson, M.I.H. Khan, M.A. Karim, Multiscale Modeling for food drying: State of the art. Compr. Rev. Food Sci. Food Saf. 17(5), 1293–1308 (2018)

    Article  PubMed  Google Scholar 

  151. C. Kumar, M.A. Karim, M.U.H. Joardder, Intermittent drying of food products: A critical review. J. Food Eng. 121, 48–57 (2014)

    Article  Google Scholar 

  152. C. Kumar, M.U.H. Joardder, T.W. Farrell, M.A. Karim, Investigation of intermittent microwave convective drying (IMCD) of food materials by a coupled 3D electromagnetics and multiphase model. Dry. Technol. 36(6), 736–750 (2018)

    Article  Google Scholar 

  153. C. Kumar, M.U.H. Joardder, T.W. Farrell, G.J. Millar, M.A. Karim, Mathematical model for intermittent microwave convective drying of food materials. Dry. Technol. 34(8), 962–973 (2016)

    Article  Google Scholar 

  154. C. Kumar, M.U.H. Joardder, A. Karim, G.J. Millar, Z. Amin, Temperature redistribution modelling during intermittent microwave convective heating. Procedia Eng. 90, 544–549 (2014)

    Article  Google Scholar 

  155. C. Kumar, M.U.H. Joardder, T.W. Farrell, M.A. Karim, Multiphase porous media model for intermittent microwave convective drying (IMCD) of food. Int. J. Therm. Sci. 104, 304–314 (2016)

    Article  Google Scholar 

  156. C. Kumar, M.U.H. Joardder, T.W. Farrell, G.J. Millar, A. Karim, A porous media transport model for apple drying. Biosyst. Eng. 176, 12–25 (2018)

    Article  Google Scholar 

  157. C. Kumar, M.A. Karim, Microwave-convective drying of food materials: A critical review. Crit. Rev. Food Sci. Nutr. 59(3), 379–394 (2019)

    Article  CAS  PubMed  Google Scholar 

  158. C. Kumar, G.J. Millar, M.A. Karim, Effective diffusivity and evaporative cooling in convective drying of food material. Dry. Technol. 33(2), 227–237 (2015)

    Article  CAS  Google Scholar 

  159. H. Feng, Y. Yin, J. Tang, Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling. Food Eng. Rev. 4(2), 89–106 (2012)

    Article  Google Scholar 

  160. M.U.H. Joardder, C. Kumar, M.A. Karim, Multiphase transfer model for intermittent microwave-convective drying of food: Considering shrinkage and pore evolution. Int. J. Multiph. Flow 95, 101–119 (2017)

    Article  CAS  Google Scholar 

  161. I.W. Turner, P.C. Jolly, Combined microwave and convective drying of a porous material. Dry. Technol. 9(5), 1209–1269 (1991)

    Article  Google Scholar 

  162. A. Datta, V. Rakesh, An Introduction to Modeling of Transport Processes: Applications to Biomedical Systems, Cambridge University Press (2010)

    Google Scholar 

  163. M. Zhang, J. Tang, A.S. Mujumdar, S. Wang, Trends in microwave-related drying of fruits and vegetables. Trends Food Sci. Technol. 17(10), 524–534 (2006)

    Article  CAS  Google Scholar 

  164. I.W. Turner, J.R. Puiggali, W. Jomaa, A numerical investigation of combined microwave and convective drying of a hygroscopic porous material: A study based on pine wood. Chem. Eng. Res. Des. 76(2), 193–209 (1998)

    Article  CAS  Google Scholar 

  165. A.S. Mujumdar, Handbook of Industrial Drying, CRC press (2006)

    Google Scholar 

  166. M. Zhang, H. Jiang, R.-X. Lim, Recent developments in microwave-assisted drying of vegetables, fruits, and aquatic products—Drying kinetics and quality considerations. Dry. Technol. 28(11), 1307–1316 (2010)

    Article  CAS  Google Scholar 

  167. S. Gunasekaran, Pulsed microwave-vacuum drying of food materials. Dry. Technol. 17(3), 395–412 (1999)

    Article  Google Scholar 

  168. M.I.H. Khan, M.A. Karim, Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Res. Int. 99, 1–14 (2017)

    Article  CAS  PubMed  Google Scholar 

  169. M.I.H. Khan, C. Kumar, M.U.H. Joardder, M.A. Karim, Determination of appropriate effective diffusivity for different food materials. Dry. Technol. 35(3), 335–346 (2017)

    Article  CAS  Google Scholar 

  170. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Experimental investigation of bound and free water transport process during drying of hygroscopic food material. Int. J. Therm. Sci. 117, 266–273 (2017)

    Article  Google Scholar 

  171. M.I.H. Khan, R.M. Wellard, S.A. Nagy, M.U.H. Joardder, M.A. Karim, Investigation of bound and free water in plant-based food material using NMR T2 relaxometry. Innov. Food Sci. Emerg. Technol. 38, 252–261 (2016)

    Article  CAS  Google Scholar 

  172. L. Huang, M. Zhang, L. Wang, A.S. Mujumdar, D. Sun, Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT-Food Sci. Technol. 47(1), 183–188 (2012)

    Article  CAS  Google Scholar 

  173. Y. Wang, M. Zhang, A.S. Mujumdar, K.J. Mothibe, S.M.R. Azam, Effect of blanching on microwave freeze drying of stem lettuce cubes in a circular conduit drying chamber. J. Food Eng. 113(2), 177–185 (2012)

    Article  Google Scholar 

  174. A. Andrés, C. Bilbao, P. Fito, Drying kinetics of apple cylinders under combined hot air–microwave dehydration. J. Food Eng. 63(1), 71–78 (2004)

    Article  Google Scholar 

  175. L. Cinquanta, D. Albanese, A. Fratianni, G. La Fianza, M. Di Matteo, Antioxidant activity and sensory attributes of tomatoes dehydrated by combination of microwave and convective heating. Agro Food Ind Hi Tech 24(6), 35–38 (2013)

    Google Scholar 

  176. D.G. Prabhanjan, H.S. Ramaswamy, G.S.V. Raghavan, Microwave-assisted convective air drying of thin layer carrots. J. Food Eng. 25(2), 283–293 (1995)

    Article  Google Scholar 

  177. D. Argyropoulos, A. Heindl, J. Müller, Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. Int. J. Food Sci. Technol. 46(2), 333–342 (2011)

    Article  CAS  Google Scholar 

  178. W. Jindarat, P. Rattanadecho, S. Vongpradubchai, Y. Pianroj, Analysis of energy consumption in drying process of non-hygroscopic porous packed bed using a combined multi-feed microwave-convective air and continuous belt system (CMCB). Dry. Technol. 29(8), 926–938 (2011)

    Article  CAS  Google Scholar 

  179. Y. Soysal, M. Arslan, M. Keskin, Intermittent microwave-convective air drying of oregano. Food Sci. Technol. Int. 15(4), 397–406 (2009)

    Article  Google Scholar 

  180. H. Jiang, M. Zhang, A.S. Mujumdar, R. Lim, Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. J. Sci. Food Agric. 94(9), 1827–1834 (2014)

    Article  CAS  PubMed  Google Scholar 

  181. K.J. Mothibe, C.-Y. Wang, A.S. Mujumdar, M. Zhang, Microwave-assisted pulse-spouted vacuum drying of apple cubes. Dry. Technol. 32(15), 1762–1768 (2014)

    Article  Google Scholar 

  182. Y. Wang, M. Zhang, A.S. Mujumdar, K.J. Mothibe, Microwave-assisted pulse-spouted bed freeze-drying of stem lettuce slices—Effect on product quality. Food Bioprocess Technol. 6(12), 3530–3543 (2013)

    Article  CAS  Google Scholar 

  183. Y. Soysal, Z. Ayhan, O. Eştürk, M.F. Arıkan, Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosyst. Eng. 103(4), 455–463 (2009)

    Article  Google Scholar 

  184. G.E. Botha, J.C. Oliveira, L. Ahrné, Microwave assisted air drying of osmotically treated pineapple with variable power programmes. J. Food Eng. 108(2), 304–311 (2012)

    Article  Google Scholar 

  185. O. Esturk, Intermittent and continuous microwave-convective air-drying characteristics of sage (Salvia officinalis) leaves. Food Bioprocess Technol. 5(5), 1664–1673 (2012)

    Article  Google Scholar 

  186. O. Esturk, M. Arslan, Y. Soysal, I. Uremis, Z. Ayhan, Drying of sage (Salvia officinalis L.) inflorescences by intermittent and continuous microwave-convective air combination. Res. Crop. 12(2), 607–615 (2011)

    Google Scholar 

  187. V. Orsat, W. Yang, V. Changrue, G.S.V. Raghavan, Microwave-assisted drying of biomaterials. Food Bioprod. Process. 85(3), 255–263 (2007)

    Article  Google Scholar 

  188. L.M. Ahrné, N.R. Pereira, N. Staack, P. Floberg, Microwave convective drying of plant foods at constant and variable microwave power. Dry. Technol. 25(7–8), 1149–1153 (2007)

    Article  Google Scholar 

  189. Y. Nishiyama, W. Cao, B. Li, Grain intermittent drying characteristics analyzed by a simplified model. J. Food Eng. 76(3), 272–279 (2006)

    Article  Google Scholar 

  190. S. Gunasekaran, H.-W. Yang, Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. J. Food Eng. 78(4), 1452–1456 (2007)

    Article  Google Scholar 

  191. S. Gunasekaran, H.-W. Yang, Optimization of pulsed microwave heating. J. Food Eng. 78(4), 1457–1462 (2007)

    Article  Google Scholar 

  192. Y. Soysal, Intermittent and continuous microwave-convective air drying of potato (lady rosetta): drying kinetics, energy consumption and product quality. Tarım Makinaları Bilimi Dergisi, 5(2), 139–148 (2009)

    Google Scholar 

  193. D. Zhao, K. An, S. Ding, L. Liu, Z. Xu, Z. Wang, Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying kinetics and physical quality. Food Bioprocess Technol. 7(8), 2308–2318 (2014)

    Article  Google Scholar 

  194. N. Aghilinategh, S. Rafiee, S. Hosseinpour, M. Omid, S.S. Mohtasebi, Optimization of intermittent microwave–convective drying using response surface methodology. Food Sci. Nutr. 3(4), 331–341 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. J. R. de J. Junqueira, J.L.G. Corrêa, D.B. Ernesto, Microwave, convective, and intermittent microwave–convective drying of pulsed vacuum osmodehydrated pumpkin slices. J. Food Process. Preserv. 41(6) (2017)

    Google Scholar 

  196. O.M. Kesbi, M. Sadeghi, S.A. Mireei, Quality assessment and modeling of microwave-convective drying of lemon slices. Eng. Agric. Environ. Food 9(3), 216–223 (2016)

    Article  Google Scholar 

  197. N.D. Pham, C. Kumar, M. Joardder, H. Khan, W. Martens, M.A. Karim, Effect of Different Power Ratio Mode of Intermittent Microwave Convective Drying on Quality Attributes of Kiwi Fruit Slices, 7–10, August (2016)

    Google Scholar 

  198. M.U.H. Joardder, M.H. Masud, S. Nasif, J.A. Plabon, S.H. Chaklader, Development and performance test of an innovative solar derived intermittent microwave convective food dryer, in AIP Conference Proceedings, 2121(1), 40010–40013 (2019)

    Google Scholar 

  199. M.K. Krokida, V.T. Karathanos, Z.B. Maroulis, D. Marinos-Kouris, Drying kinetics of some vegetables. J. Food Eng. 59(4), 391–403 (2003)

    Article  Google Scholar 

  200. A. Kaya, O. Aydin, C. Demirtas, M. Akgün, An experimental study on the drying kinetics of quince. Desalination 212(1–3), 328–343 (2007)

    Article  CAS  Google Scholar 

  201. S.J. Babalis, V.G. Belessiotis, Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 65(3), 449–458 (2004)

    Article  Google Scholar 

  202. K. Sacilik, A.K. Elicin, The thin layer drying characteristics of organic apple slices. J. Food Eng. 73(3), 281–289 (2006)

    Article  Google Scholar 

  203. M.J. Barroca, R. Guiné, Study of drying kinetics of quince, in International Conference of Agricultural Engineering CIGR-AgEng (2012)

    Google Scholar 

  204. D.A. Tzempelikos, A.P. Vouros, A.V. Bardakas, A.E. Filios, D.P. Margaris, Case studies on the effect of the air drying conditions on the convective drying of quinces. Case Stud. Therm. Eng. 3, 79–85 (2014)

    Article  Google Scholar 

  205. A.A. Ananno, M.H. Masud, P. Dabnichki, A. Ahmed, Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy 196, 270–286 (2020)

    Google Scholar 

  206. M.H. Masud, A.A. Ananno, N. Ahmed, P. Dabnichki, K.N. Salehin, Experimental investigation of a novel waste heat based food drying system. Journal of Food Engineering 281,110002 (2020)

    Google Scholar 

  207. M.U. Joardder, M.H. Masud, S, Nasif, J.A. Plabon, S.H. Chaklader, Development and performance test of an innovative solar derived intermittent microwave convective food dryer. In AIP Conference Proceedings. 2121(1)1, 040010, July (2019)

    Google Scholar 

Download references

Acknowledgement

Icons used in the illustration of various figures of this chapter were made by Freepik, Itim2101, Picol, Smashicons, Monkin, Phatplus, Vector Market, and Good Ware from www.flaticon.com.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan Masud, M., Karim, A., Ananno, A.A., Ahmed, A. (2020). Sustainable Drying Techniques for Developing Countries. In: Sustainable Food Drying Techniques in Developing Countries: Prospects and Challenges. Springer, Cham. https://doi.org/10.1007/978-3-030-42476-3_5

Download citation

Publish with us

Policies and ethics