Skip to main content

Cooking Water Functional Properties

  • Chapter
  • First Online:
Upcycling Legume Water: from wastewater to food ingredients

Abstract

Aquafaba was shown to replace egg white in confectionery products. Nonetheless, limited information was available on its physicochemical properties. Thus, recent studies investigated legume cooking water as texturizer. Most samples were slightly acidic (pH 6.1–6.5). Foaming capacity ranged from 38% to 97% based on legume type, within range of egg white solutions of similar concentration. A direct correlation to protein content was found. Despite the boiling process, most protein was soluble (86–100%). Ultrasounds treatments enhanced foaming properties of Aquafaba up to 548%. All foams were highly stable, potentially due to saponins. Emulsifying properties were outstanding, reaching values of 47 m2/g (lentils) and 100% (chickpeas). A combination of fibre, protein and saponins potentially contributed to highly stable emulsions. Higher hydrophobicity was observed, with absorption capacity of oil exceeding that of water (2.7–3.2 vs. 0.1–2.2 g/g) due to the presence of more hydrophobic sites on macromolecules. Finally, excellent prebiotic potential was determined. Most cooking water contained high levels of fermentable oligosaccharides, protein and minerals to support bacterial growth. The only exception was soy, possibly due to the higher phytate content. In summary, pulses cooking water are good foaming and gelling agents and excellent emulsifiers. Prebiotic potential opens the door to new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilar, N., Albanell, E., Miñarro, B., & Capellas, M. (2015). Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT-Food science and Technology, 62(1), 225–232.

    Article  CAS  Google Scholar 

  • Aravantinos-Zafiris, G., Oreopoulou, V., Tzia, C., & Thomopoulos, C. D. (1994). Fibre fraction from orange peel residues after pectin extraction. LWT-Food Science and Technology, 27(5), 468–471.

    Article  Google Scholar 

  • Araya-Cloutier, C., Vincken, J. P., van Ederen, R., den Besten, H. M., & Gruppen, H. (2018). Rapid membrane permeabilization of Listeria monocytogenes and Escherichia coli induced by antibacterial prenylated phenolic compounds from legumes. Food Chemistry, 240, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Aydemir, L. Y., & Yemenicioğlu, A. (2013). Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT-Food Science and Technology, 50(2), 686–694.

    Article  CAS  Google Scholar 

  • Bird, L. G., Pilkington, C. L., Saputra, A., & Serventi, L. (2017). Products of chickpea processing as texture improvers in gluten-free bread. Food Science and Technology International, 23(8), 690–698.

    Article  PubMed  Google Scholar 

  • Bordenave, N., Hamaker, B. R., & Ferruzzi, M. G. (2014). Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & Function, 5(1), 18–34.

    Article  CAS  Google Scholar 

  • Böttcher, S., & Drusch, S. (2017). Saponins—Self-assembly and behavior at aqueous interfaces. Advances in Colloid and Interface Science, 243, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431.

    Article  CAS  Google Scholar 

  • Buhl, T. F., Christensen, C. H., & Hammershøj, M. (2019). Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocolloids, 96, 354–364.

    Article  CAS  Google Scholar 

  • Campbell, L., Raikos, V., & Euston, S. R. (2003). Modification of functional properties of egg-white proteins. Food/Nahrung, 47(6), 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Lu, J., Liu, F., Nsor-Atindana, J., Xu, F., Goff, H. D., Ma, J., & Zhong, F. (2019). Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids, 88, 247–255.

    Article  CAS  Google Scholar 

  • Chibbar, R. N., Ambigaipalan, P., & Hoover, R. (2010). Molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. Cereal Chemistry, 87(4), 342–352.

    Article  CAS  Google Scholar 

  • Chua, J. Y., & Liu, S. Q. (2019). Soy whey: More than just wastewater from tofu and soy protein isolate industry. Trends in Food Science & Technology, 91, 24–32.

    Article  CAS  Google Scholar 

  • Chua, J. Y., Lu, Y., & Liu, S. Q. (2018). Evaluation of five commercial non-Saccharomyces yeasts in fermentation of soy (tofu) whey into an alcoholic beverage. Food Microbiology, 76, 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Chung, C., Sher, A., Rousset, P., Decker, E. A., & McClements, D. J. (2017). Formulation of food emulsions using natural emulsifiers: Utilization of quillaja saponin and soy lecithin to fabricate liquid coffee whiteners. Journal of Food Engineering, 209, 1–11.

    Article  CAS  Google Scholar 

  • Damian, J. J., Huo, S., & Serventi, L. (2018). Phytochemical content and emulsifying ability of pulses cooking water. European Food Research and Technology, 244(9), 1647–1655.

    Article  CAS  Google Scholar 

  • de Fátima Viana, S., Guimarães, V. M., José, I. C., de Oliveira, M. G. D. A., Costa, N. M. B., de Barros, E. G., et al. (2005). Hydrolysis of oligosaccharides in soybean flour by soybean α-galactosidase. Food Chemistry, 93(4), 665–670.

    Article  CAS  Google Scholar 

  • Du, S. K., Jiang, H., Yu, X., & Jane, J. L. (2014). Physicochemical and functional properties of whole legume flour. LWT-Food Science and Technology, 55(1), 308–313.

    Article  CAS  Google Scholar 

  • Ettoumi, Y. L., Chibane, M., & Romero, A. (2016). Emulsifying properties of legume proteins at acidic conditions: Effect of protein concentration and ionic strength. LWT-Food Science and Technology, 66, 260–266.

    Article  CAS  Google Scholar 

  • European Commission. Horizon 2020. URL: https://ec.europa.eu/programmes/horizon2020/en. Accessed on 03 Oct 2019.

  • Felix, M., Cermeño, M., Romero, A., & FitzGerald, R. J. (2019). Characterisation of the bioactive properties and microstructure of chickpea protein-based oil in water emulsions. Food Research International, 121, 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Félix, M., Romero, A., Carrera-Sanchez, C., & Guerrero, A. (2019). A comprehensive approach from interfacial to bulk properties of legume protein-stabilized emulsions. Fluids, 4(2), 65.

    Article  CAS  Google Scholar 

  • Food Navigator USA. Most consumers want and will pay more for ‘sustainable’ options, but struggle to easily find them. 24-Jun-2019. By Elizabeth Crawford. URL: https://www.foodnavigator-usa.com/Article/2019/06/24/Most-consumers-want-and-will-pay-more-for-sustainable-options-but-struggle-to-easily-find-them. Accessed on 03 Oct 2019.

  • Foschia, M., Horstmann, S. W., Arendt, E. K., & Zannini, E. (2017). Legumes as functional ingredients in gluten-free bakery and pasta products. Annual Review of Food Science and Technology, 8, 75–96.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Vaquero, M., Lopez-Alonso, M., & Hayes, M. (2017). Assessment of the functional properties of protein extracted from the brown seaweed Himanthalia elongata (Linnaeus) SF Gray. Food Research International, 99, 971–978.

    Article  CAS  PubMed  Google Scholar 

  • Goto, T., Teraminami, A., Lee, J. Y., Ohyama, K., Funakoshi, K., Kim, Y. I., Hirai, S., Uemura, T., Yu, R., Takahashi, N., & Kawada, T. (2012). Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese–diabetic mice. The Journal of Nutritional Biochemistry, 23(7), 768–776.

    Article  CAS  PubMed  Google Scholar 

  • Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231–258.

    Article  PubMed  CAS  Google Scholar 

  • Gullón, B., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2017). Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology, 67, 220–235.

    Article  CAS  Google Scholar 

  • Hassan, S. M., Byrd, J. A., Cartwright, A. L., & Bailey, C. A. (2010). Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Applied Biochemistry and Biotechnology, 162(4), 1008–1017.

    Article  CAS  PubMed  Google Scholar 

  • Jarpa-Parra, M. (2018). Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science & Technology, 53(4), 892–903.

    Article  CAS  Google Scholar 

  • Jiang, J., Chen, J., & Xiong, Y. L. (2009). Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline pH-shifting processes. Journal of Agricultural and Food Chemistry, 57(16), 7576–7583.

    Article  CAS  PubMed  Google Scholar 

  • Kim, N. H., & Rhee, M. S. (2016). Phytic acid and sodium chloride show marked synergistic bactericidal effects against nonadapted and acid-adapted Escherichia coli O157: H7 strains. Applied and Environmental Microbiology, 82(4), 1040–1049.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutoš, T., Golob, T., Kač, M., & Plestenjak, A. (2003). Dietary fibre content of dry and processed beans. Food Chemistry, 80(2), 231–235.

    Article  Google Scholar 

  • Ladjal-Ettoumi, Y., Boudries, H., Chibane, M., & Romero, A. (2016). Pea, chickpea and lentil protein isolates: Physicochemical characterization and emulsifying properties. Food Biophysics, 11(1), 43–51.

    Article  Google Scholar 

  • Lafarga, T., Villaró, S., Bobo, G., & Aguiló-Aguayo, I. (2019). Optimisation of the pH and boiling conditions needed to obtain improved foaming and emulsifying properties of chickpea aquafaba using a response surface methodology. International Journal of Gastronomy and Food Science, 18, 100177.

    Google Scholar 

  • Lian, H., Luo, K., Gong, Y., Zhang, S., & Serventi, L. (2019). Okara flours from chickpea and soy are thickeners: Increased dough viscosity and moisture content in gluten-free bread. International Journal of Food Science & Technology, 55(2), 805–812.

    Google Scholar 

  • Marefati, A., Matos, M., Wiege, B., Haase, N. U., & Rayner, M. (2018). Pickering emulsifiers based on hydrophobically modified small granular starches Part II–Effects of modification on emulsifying capacity. Carbohydrate Polymers, 201, 416–424.

    Article  CAS  PubMed  Google Scholar 

  • Martens, L. G., Nilsen, M. M., & Provan, F. (2017). Pea hull fibre: Novel and sustainable fibre with important health and functional properties. EC Nutrition, 10, 139–148.

    Google Scholar 

  • Mateos-Aparicio, I., Pérez-López, E., & Rupérez, P. (2019). Valorisation approach for the soybean by-product okara using high hydrostatic pressure. Current Nutrition & Food Science, 15(6), 548–550.

    Article  CAS  Google Scholar 

  • Matsumiya, K., & Murray, B. S. (2016). Soybean protein isolate gel particles as foaming and emulsifying agents. Food Hydrocolloids, 60, 206–215.

    Article  CAS  Google Scholar 

  • Meurer, M. C., de Souza, D., & Marczak, L. D. F. (2019). Effects of ultrasound on technological properties of chickpea cooking water (aquafaba). Journal of Food Engineering, 265, 109688.

    Article  CAS  Google Scholar 

  • Mustafa, R., He, Y., Shim, Y. Y., & Reaney, M. J. (2018). Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. International Journal of Food Science & Technology, 53(10), 2247–2255.

    Article  CAS  Google Scholar 

  • Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Review, 4, 593–656.

    Article  CAS  Google Scholar 

  • Nilufer-Erdil, D., Serventi, L., Boyacioglu, D., & Vodovotz, Y. (2012). Effect of soy milk powder addition on staling of soy bread. Food Chemistry, 131(4), 1132–1139.

    Article  CAS  Google Scholar 

  • Olorunsola, E. O., Akpabio, E. I., Adedokun, M. O., & Ajibola, D. O. (2018). Emulsifying properties of hemicelluloses. In Science and technology behind nanoemulsions (p. 29), IntechOpen, London, UK.

    Google Scholar 

  • Ostermann-Porcel, M. V., Rinaldoni, A. N., Rodriguez-Furlán, L. T., & Campderrós, M. E. (2017). Quality assessment of dried okara as a source of production of gluten-free flour. Journal of the Science of Food and Agriculture, 97(9), 2934–2941.

    Article  CAS  PubMed  Google Scholar 

  • Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6.

    Google Scholar 

  • Pal, R. S., Bhartiya, A., Yadav, P., Kant, L., Mishra, K. K., Aditya, J. P., & Pattanayak, A. (2017). Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). Journal of Food Science and Technology, 54(4), 909–920.

    Article  CAS  PubMed  Google Scholar 

  • Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716–723.

    Article  CAS  Google Scholar 

  • Pina-Pérez, M. C., & Pérez, M. F. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends in Food Science & Technology, 72, 114–124.

    Article  CAS  Google Scholar 

  • Rodríguez, R., Jimenez, A., Fernández-Bolaños, J., Guillén, R., & Heredia, A. (2006). Dietary fibre from vegetable products as source of functional ingredients. Trends in Food Science & Technology, 17(1), 3–15.

    Article  CAS  Google Scholar 

  • Sanjeewa, W. T., Wanasundara, J. P., Pietrasik, Z., & Shand, P. J. (2010). Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Research International, 43(2), 617–626.

    Article  CAS  Google Scholar 

  • Serventi, L., Wang, S., Zhu, J., Liu, S., & Fei, F. (2018). Cooking water of yellow soybeans as emulsifier in gluten-free crackers. European Food Research and Technology, 244(12), 2141–2148.

    Article  CAS  Google Scholar 

  • Shehata, T. E., & Marr, A. G. (1971). Effect of nutrient concentration on the growth of Escherichia coli. Journal of Bacteriology, 107(1), 210–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, L., Arntfield, S. D., & Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International, 107, 660–668.

    Article  CAS  PubMed  Google Scholar 

  • Singhal, A., Karaca, A. C., Tyler, R., & Nickerson, M. (2016). Pulse proteins: From processing to structure-function relationships (p. 55). Grain Legumes, London, UK.

    Google Scholar 

  • Stantiall, S. E., Dale, K. J., Calizo, F. S., & Serventi, L. (2018). Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. European Food Research and Technology, 244(1), 97–104.

    Article  CAS  Google Scholar 

  • Subuola, F., Widodo, Y., & Kehinde, T. (2012). Processing and utilization of legumes in the tropics. In Trends in vital food and control engineering (pp. 71–85). Rijeka, IntechOpen.

    Google Scholar 

  • Sui, X., Bi, S., Qi, B., Wang, Z., Zhang, M., Li, Y., & Jiang, L. (2017). Impact of ultrasonic treatment on an emulsion system stabilized with soybean protein isolate and lecithin: Its emulsifying property and emulsion stability. Food Hydrocolloids, 63, 727–734.

    Article  CAS  Google Scholar 

  • Tabtabaei, S., Konakbayeva, D., Rajabzadeh, A. R., & Legge, R. L. (2019). Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation. Food Chemistry, 283, 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Toews, R., & Wang, N. (2013). Physicochemical and functional properties of protein concentrates from pulses. Food Research International, 52(2), 445–451.

    Article  CAS  Google Scholar 

  • Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450–460.

    Article  CAS  Google Scholar 

  • Tyler, R., Wang, N., & Han, J. (2017). Composition, nutritional value, functionality, processing, and novel food uses of pulses and pulse ingredients. Cereal Chemistry, 94(1), 1–1.

    Article  CAS  Google Scholar 

  • Vong, W. C., & Liu, S. Q. (2019). The effects of carbohydrase, probiotic Lactobacillus paracasei and yeast Lindnera saturnus on the composition of a novel okara (soybean residue) functional beverage. LWT, 100, 196–204.

    Article  CAS  Google Scholar 

  • Xiong, T., Ye, X., Su, Y., Chen, X., Sun, H., Li, B., & Chen, Y. (2018). Identification and quantification of proteins at adsorption layer of emulsion stabilized by pea protein isolates. Colloids and Surfaces B: Biointerfaces, 171, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., Jin, Z., Ohm, J. B., Schwarz, P., Rao, J., & Chen, B. (2018). Improvement of the antioxidative activity of soluble phenolic compounds in chickpea by germination. Journal of Agricultural and Food Chemistry, 66(24), 6179–6187.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Peng, H., Deng, Z., & Tsao, R. (2018). Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. Journal of Food Bioactives, 1, 93–103.

    Article  Google Scholar 

  • Zhou, Q. I., Zhao, Y. U., Dang, H., Tang, Y., & Zhang, B. (2019). Antibacterial effects of phytic acid against foodborne pathogens and investigation of its mode of action. Journal of Food Protection, 82(5), 826–833.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Anirudh Sounderrajan for analysing the protein solubility of legume cooking water, as well as Yaying Luo for performing literature review on the antimicrobial properties of legumes. The courses FOOD 398, FOOD 399 and FOOD 699 of Lincoln University (New Zealand) provided the funding necessary for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Serventi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serventi, L., Gao, C., Chen, M., Chelikani, V. (2020). Cooking Water Functional Properties. In: Upcycling Legume Water: from wastewater to food ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-42468-8_7

Download citation

Publish with us

Policies and ethics