Skip to main content

Soaking Water Functional Properties

  • Chapter
  • First Online:
Upcycling Legume Water: from wastewater to food ingredients

Abstract

The soaking water of legumes containd soluble and insoluble carbohydrates, protein, minerals, phenolic and saponins. These compounds are known to improve food texture and act as prebiotics. Therefore, this chapter presents new findings on legume soaking water as texturizer (freeze-dried) and prebiotic (liquid). The low fractions of soluble carbohydrates and proteins resulted in modest foaming ability (4.0–19%), modest oil absorption capacity (2.1–2.7 g/g) and insignificant effects on water absorption. In contrast, excellent emulsifying ability was observed for split yellow peas (50 m2/g), with relevant values for green lentils and yellow soybeans. Different mechanisms have been proposed: presence of both soluble and insoluble proteins (peas), saponins (lentils) and amphiphilic proteins (soy). Remarkably, prebiotic properties were observed in liquid samples. The growth of probiotic Lactobacilli occurred to levels drastically higher than a standard nutrient broth. Oligosaccharides were abundant in haricot beans, while higher biological value of soy proteins might explain soy performance. Results of lentils and peas were lower than other legume. Antimicrobial peptides known as defensin Psd1, Psd2 (peas) and Lc-def (lentils) might have inhibited microbial growth. In summary, lentil soaking water can be freeze-dried into excellent emulsifiers, especially peas. Beans and soy soaking water are also promising prebiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida, M. S., Cabral, K. M., Zingali, R. B., & Kurtenbach, E. (2000). Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Archives of Biochemistry and Biophysics, 378(2), 278–286.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, M. S., Cabral, K. M., Kurtenbach, E., Almeida, F. C., & Valente, A. P. (2002). Solution structure of Pisum sativum defensin 1 by high resolution NMR: Plant defensins, identical backbone with different mechanisms of action. Journal of Molecular Biology, 315(4), 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, V. S. G., Fernandes, C. M., Felício, M. R., Valle, A. S., Quintana, P. G., Almeida, C. C., Barreto-Bergter, E., Gonçalves, S., Santos, N. C., & Kurtenbach, E. (2019). Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1861(4), 713–728.

    Article  CAS  Google Scholar 

  • Araya-Cloutier, C., Vincken, J. P., van Ederen, R., den Besten, H. M., & Gruppen, H. (2018). Rapid membrane permeabilization of Listeria monocytogenes and Escherichia coli induced by antibacterial prenylated phenolic compounds from legumes. Food Chemistry, 240, 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Bordenave, N., Hamaker, B. R., & Ferruzzi, M. G. (2014). Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & Function, 5(1), 18–34.

    Article  CAS  Google Scholar 

  • Caballero, B., Finglas, P., & Toldrá, F. (2015). Encyclopedia of food and health. Academic: Oxford, England.

    Google Scholar 

  • Cilla, A., Bosch, L., Barberá, R., & Alegría, A. (2018). Effect of processing on the bioaccessibility of bioactive compounds–a review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, 68, 3–15.

    Article  CAS  Google Scholar 

  • Damian, J. J., Huo, S., & Serventi, L. (2018). Phytochemical content and emulsifying ability of pulses cooking water. European Food Research and Technology, 244(9), 1647–1655.

    Article  CAS  Google Scholar 

  • Dickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25–39.

    Article  CAS  Google Scholar 

  • Finkina, E. I., Shramova, E. I., Tagaev, A. A., & Ovchinnikova, T. V. (2008). A novel defensin from the lentil Lens culinaris seeds. Biochemical and Biophysical Research Communications, 371(4), 860–865.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401–1412.

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves, S., Teixeira, A., Abade, J., de Medeiros, L. N., Kurtenbach, E., & Santos, N. C. (2012). Evaluation of the membrane lipid selectivity of the pea defensin Psd1. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(5), 1420–1426.

    Article  CAS  Google Scholar 

  • Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231–258.

    Article  PubMed  CAS  Google Scholar 

  • Hammami, R., Ben Hamida, J., Vergoten, G., & Fliss, I. (2008). PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic Acids Research, 37(suppl_1), D963–D968.

    PubMed  PubMed Central  Google Scholar 

  • Hassan, S. M., Byrd, J. A., Cartwright, A. L., & Bailey, C. A. (2010). Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Applied Biochemistry and Biotechnology, 162(4), 1008–1017.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Liu, Y., Zhang, W., Dale, K. J., Liu, S., Zhu, J., & Serventi, L. (2018). Composition of legume soaking water and emulsifying properties in gluten-free bread. Food Science and Technology International, 24(3), 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Jarpa-Parra, M. (2018). Lentil protein: a review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science & Technology, 53(4), 892–903.

    Article  CAS  Google Scholar 

  • Johnson, C. R., Thavarajah, P., Payne, S., Moore, J., & Ohm, J. B. (2015). Processing, cooking, and cooling affect prebiotic concentrations in lentil (Lens culinaris Medikus). Journal of Food Composition and Analysis, 38, 106–111.

    Article  CAS  Google Scholar 

  • Kanatt, S. R., Arjun, K., & Sharma, A. (2011). Antioxidant and antimicrobial activity of legume hulls. Food Research International, 44(10), 3182–3187.

    Article  CAS  Google Scholar 

  • Kaur, M., & Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chemistry, 91(3), 403–411.

    Article  CAS  Google Scholar 

  • Klupšaitė, D., & Juodeikienė, G. (2015). Legume: Composition, protein extraction and functional properties. A review. Chemical Technology, 66(1), 5–12.

    Article  CAS  Google Scholar 

  • Kruger, N. J. (2009). The Bradford method for protein quantitation. In The protein protocols handbook (pp. 17–24). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Lafarga, T., Álvarez, C., Villaró, S., Bobo, G., & Aguiló-Aguayo, I. (2019). Potential of pulse-derived proteins for developing novel vegan edible foams and emulsions. International Journal of Food Science & Technology, 52(2), 475–481.

    Google Scholar 

  • Liu, S., Singh, M., Wayman, A., Chen, D., & Kenar, J. (2017). Evaluation of soybean–navy bean emulsions using different processing technologies. Beverages, 3(2), 23.

    Article  CAS  Google Scholar 

  • Lopez-Martinez, L. X., Leyva-Lopez, N., Gutierrez-Grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of Functional Foods, 38, 624–634.

    Article  CAS  Google Scholar 

  • Makri, E., Papalamprou, E., & Doxastakis, G. (2005). Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocolloids, 19(3), 583–594.

    Article  CAS  Google Scholar 

  • Martinez-Villaluenga, C., Frias, J., & Vidal-Valverde, C. (2008). Alpha-galactosides: antinutritional factors or functional ingredients? Critical Reviews in Food Science and Nutrition, 48(4), 301–316.

    Article  CAS  PubMed  Google Scholar 

  • McSwain, M., Johnson, C. R., Kumar, S., & Thavarajah, P. (2019). Pulses, global health, and sustainability: Future trends. In Health benefits of pulses (pp. 1–17). Cham: Springer.

    Google Scholar 

  • McWatters, K. H., & Cherry, J. P. (1977). Emulsification, foaming and protein solubility properties of defatted soybean, peanut, field pea and pecan flours. Journal of Food Science, 42(6), 1444–1447.

    Article  Google Scholar 

  • Mills, E. C., Huang, L., Noel, T. R., Gunning, A. P., & Morris, V. J. (2001). Formation of thermally induced aggregates of the soya globulin β-conglycinin. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1547(2), 339–350.

    Article  CAS  Google Scholar 

  • Mitra, S., & Dungan, S. R. (1997). Micellar properties of Quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agricultural and Food Chemistry, 45(5), 1587–1595.

    Article  CAS  Google Scholar 

  • Mitra, S., & Dungan, S. R. (2000). Micellar properties of quillaja saponin. 2. Effect of solubilized cholesterol on solution properties. Colloids and Surfaces B: Biointerfaces, 17(2), 117–133.

    Article  CAS  Google Scholar 

  • Mohanty, D., Misra, S., Mohapatra, S. & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience. 152–160.

    Google Scholar 

  • Mojica, L., & de Mejia, E. G. (2018). Legume bioactive peptides. In Legumes (pp. 106–128), CPI Group. Croydon (UK).

    Google Scholar 

  • Moussou, N., Corzo-Martínez, M., Sanz, M. L., Zaidi, F., Montilla, A., & Villamiel, M. (2017). Assessment of Maillard reaction evolution, prebiotic carbohydrates, antioxidant activity and α-amylase inhibition in pulse flours. Journal of Food Science and Technology, 54(4), 890–900.

    Article  CAS  PubMed  Google Scholar 

  • O’Kane, F. E., Vereijken, J. M., Gruppen, H., & Van Boekel, M. A. (2005). Gelation behavior of protein isolates extracted from 5 cultivars of Pisum sativum L. Journal of Food Science, 70(2), C132–C137.

    Article  Google Scholar 

  • Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716–723.

    Article  CAS  Google Scholar 

  • Raikos, V., Campbell, L., & Euston, S. R. (2007). Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International, 40(3), 347–355.

    Article  CAS  Google Scholar 

  • Rehal, J., Beniwal, V., & Gill, B. S. (2019). Physico-chemical, engineering and functional properties of two soybean cultivars. Legume Research-An International Journal, 42(1), 39–44.

    Google Scholar 

  • Ribeiro, B. D., Alviano, D. S., Barreto, D. W., & Coelho, M. A. Z. (2013). Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): Critical micellar concentration, antioxidant and antimicrobial activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 736–743.

    Article  CAS  Google Scholar 

  • Sathe, S. K., & Salunkhe, D. K. (1981). Functional properties of the great northern bean (Phaseolus vulgaris L.) proteins: Emulsion, foaming, viscosity, and gelation properties. Journal of Food Science, 46(1), 71–81.

    Article  Google Scholar 

  • Schley, P. D., & Field, C. J. (2002). The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition, 87(S2), S221–S230.

    Google Scholar 

  • Serventi, L., Wang, S., Zhu, J., Liu, S., & Fei, F. (2018). Cooking water of yellow soybeans as emulsifier in gluten-free crackers. European Food Research and Technology, 244(12), 2141–2148.

    Article  CAS  Google Scholar 

  • Shenkarev, Z. O., Gizatullina, A. K., Finkina, E. I., Alekseeva, E. A., Balandin, S. V., Mineev, K. S., Arseniev, A. S., & Ovchinnikova, T. V. (2014). Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochemical and Biophysical Research Communications, 451(2), 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Shevkani, K., Singh, N., Chen, Y., Kaur, A., & Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56, 1–12.

    Google Scholar 

  • Sila, A., Bayar, N., Ghazala, I., Bougatef, A., Ellouz-Ghorbel, R., & Ellouz-Chaabouni, S. (2014). Water-soluble polysaccharides from agro-industrial by-products: Functional and biological properties. International Journal of Biological Macromolecules, 69, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Singhal, A., Karaca, A. C., Tyler, R., & Nickerson, M. (2016). Pulse proteins: From processing to structure-function relationships (p. 55). Grain Legumes: Rijeka, Croatia.

    Google Scholar 

  • Sitohy, M., & Osman, A. (2010). Antimicrobial activity of native and esterified legume proteins against Gram-negative and Gram-positive bacteria. Food Chemistry, 120(1), 66–73.

    Article  CAS  Google Scholar 

  • Siva, N., Thavarajah, P., Kumar, S., & Thavarajah, D. (2019). Prebiotic carbohydrates in pulse crops towards improve human health. Frontiers in Nutrition, 6, 38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sosulski, F. W., & McCurdy, A. R. (1987). Functionality of flours, protein fractions and isolates from field peas and faba bean. Journal of Food Science, 52(4), 1010–1014.

    Article  Google Scholar 

  • Stantiall, S. E., Dale, K. J., Calizo, F. S., & Serventi, L. (2018). Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. European Food Research and Technology, 244(1), 97–104.

    Article  CAS  Google Scholar 

  • Sumnu, G., Sahin, S., Aydogdu, A. & Ozkahraman, B.C. (2016). Effects of legume flours on batter rheology and cake physical quality. In III International conference on agricultural and food engineering 1152 (pp. 175–182).

    Google Scholar 

  • Swennen, K., Courtin, C. M., & Delcour, J. A. (2006). Non-digestible oligosaccharides with prebiotic properties. Critical Reviews in Food Science and Nutrition, 46(6), 459–471.

    Article  CAS  PubMed  Google Scholar 

  • Tam, J. P., Wang, S., Wong, K. H., & Tan, W. L. (2015). Antimicrobial peptides from plants. Pharmaceuticals, 8(4), 711–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients, 11(7), 1591.

    Article  CAS  PubMed Central  Google Scholar 

  • Tolstoguzov, V. B. (1997). Protein-polysaccharide interactions. Food Science And Technology-New York-Marcel Dekker, 171–198.

    Google Scholar 

  • Wang, M. P., Chen, X. W., Guo, J., Yang, J., Wang, J. M., & Yang, X. Q. (2019). Stabilization of foam and emulsion by subcritical water-treated soy protein: Effect of aggregation state. Food Hydrocolloids, 87, 619–628.

    Article  CAS  Google Scholar 

  • Zayas, J. F. (1997). Foaming properties of proteins. In Functionality of proteins in food (pp. 260–309). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Zhou, Q. I., Zhao, Y. U., Dang, H., Tang, Y., & Zhang, B. (2019). Antibacterial effects of phytic acid against foodborne pathogens and investigation of its mode of action. Journal of Food Protection, 82(5), 826–833.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This book chapter was realized with the contribution of the teaching funds offered by Lincoln University for the research projects called “FOOD 399 – Research Placement” (Bachelor) and “FOOD 699 – Research Placement” (Taught Master). Anirudh Sounderrajan performed the analysis of protein solubility, while Jingnan Zhu and Silu Liu measured the pH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Serventi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serventi, L., Gao, C., Chang, W., Luo, Y., Chen, M., Chelikani, V. (2020). Soaking Water Functional Properties. In: Upcycling Legume Water: from wastewater to food ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-42468-8_4

Download citation

Publish with us

Policies and ethics