Skip to main content

Soaking Water Composition

  • Chapter
  • First Online:
  • 714 Accesses

Abstract

Soaking legumes is necessary for consumption, but nutritional losses occur during this process. Partial explanation to the altered nutritional profile of soaked legumes could be leaching in the processing water. Therefore, this chapter examines recent publications and discusses new experimental findings on the composition of legume soaking water. Studies have shown that the soaking water of legumes contained 0.26–2.38 g-100 mL of dry matter. Seeds geometry (size, shape) and structure (whole, split) affects leaching, with the highest losses for haricot beans and split yellow peas. Soluble and insoluble carbohydrates each constitute about 30% of the leached material, followed by lower levels of protein (20–30%) and minerals (15–20%). Iron, magnesium, potassium and phosphorous were present in nutritionally relevant quantities: 100 mL of legume soaking water contained up to 200% of the recommended daily intake. On the contrary, phenolic compounds and saponins were found in modest amounts: 0.3 and 3.0 mg/g, respectively. Similarly, antinutritional factors such as phytic acid and trypsin inhibitors represented minor fractions of the solids. Only soybean soaking water contained about 3 TUI/mg of trypsin inhibitors, well below values of processed legume foods (1.6–14 TUI/mg). In closing, legume soaking water is an interesting source of oligosaccharides and minerals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Avilés-Gaxiola, S., Chuck-Hernández, C., & Serna Saldivar, S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83(1), 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Camaschella, C. (2019). Iron deficiency. Blood, 133(1), 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Clemente, A., & del Carmen Arques, M. (2014). Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World journal of gastroenterology: WJG, 20(30), 10305.

    Article  PubMed  CAS  Google Scholar 

  • Costa, R., Fusco, F., & Gândara, J. F. (2018). Mass transfer dynamics in soaking of chickpea. Journal of Food Engineering, 227, 42–50.

    Article  CAS  Google Scholar 

  • Csapó, J., & Albert, C. (2018). Methods and procedures for reducing soy trypsin inhibitor activity by means of heat treatment combined with chemical methods. Acta Universitatis Sapientiae, Alimentaria, 11(1), 58–80.

    Article  CAS  Google Scholar 

  • Dueñas, M., Sarmento, T., Aguilera, Y., Benitez, V., Mollá, E., Esteban, R. M., & Martín-Cabrejas, M. A. (2016). Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT-Food Science and Technology, 1(66), 72–78.

    Article  CAS  Google Scholar 

  • El Tinay, A. H., Mahgoub, S. O., Mohamed, B. E., & Hamad, M. A. (1989). Proximate composition and mineral and phytate contents of legumes grown in Sudan. Journal of Food Composition and Analysis, 2(1), 69–78.

    Article  Google Scholar 

  • El-Hady, E. A., & Habiba, R. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT-Food Science and Technology, 36(3), 285–293.

    Article  CAS  Google Scholar 

  • Friedman, M., & Gumbmann, M. R. (1986). Nutritional improvement of soy flour through inactivation of trypsin inhibitors by sodium sulfite. Journal of Food Science, 51(5), 1239–1241.

    Article  CAS  Google Scholar 

  • Greiner, R., Larsson Alminger, M., Carlsson, N. G., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M. M., & Goyoaga, C. (2002). Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. Journal of Agricultural and Food Chemistry, 50(23), 6865–6870.

    Article  CAS  PubMed  Google Scholar 

  • Güçlü-Üstündağ, Ö., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical reviews in food science and nutrition, 47(3), 231–258.

    Google Scholar 

  • Guillamon, E., Pedrosa, M. M., Burbano, C., Cuadrado, C., de Cortes Sánchez, M., & Muzquiz, M. (2008). The trypsin inhibitors present in seed of different grain legume species and cultivar. Food Chemistry, 107(1), 68–74.

    Article  CAS  Google Scholar 

  • Gupta, R. K., Gangoliya, S. S., & Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–684.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Liu, Y., Zhang, W., Dale, K. J., Liu, S., Zhu, J., & Serventi, L. (2018). Composition of legume soaking water and emulsifying properties in gluten-free bread. Food Science and Technology International, 24(3), 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Huma, N., Anjum, M., Sehar, S., Issa Khan, M., & Hussain, S. (2008). Effect of soaking and cooking on nutritional quality and safety of legumes. Nutrition & Food Science, 38(6), 570–577.

    Article  Google Scholar 

  • James, B., Ting, J., & Wang, G. (2019). Molybdenum (Mo) availability in soil, dietary intake and its health risk assessment in the soil-food crops system. Environment international.

    Google Scholar 

  • Kawamura, S. (1967). Quantitative paper chromatography of sugars of the cotyledon, hull, and hypocotyl of soybeans of selected varieties. Technical Bulletin of Faculty of Agriculture, 18 (2), 117–131.

    Google Scholar 

  • Kumar, V., Sinha, A. K., Makkar, H. P., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120(4), 945–959.

    Article  CAS  Google Scholar 

  • Lestienne, I., Icard-Vernière, C., Mouquet, C., Picq, C., & Trèche, S. (2005). Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chemistry, 89(3), 421–425.

    Article  CAS  Google Scholar 

  • Lin, P. Y., & Lai, H. M. (2006). Bioactive compounds in legumes and their germinated products. Journal of Agricultural and Food Chemistry, 54(11), 3807–3814.

    Article  CAS  PubMed  Google Scholar 

  • Lott, J. N., Ockenden, I., Raboy, V., & Batten, G. D. (2000). Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Science Research, 10(1), 11–33.

    Article  CAS  Google Scholar 

  • McCleary, N. (2008). Technological aspects of dietary fibre. In Advanced dietary fibre technology. Oxford: Blackwell Science.

    Google Scholar 

  • McKie, V. A., & Mc Cleary, B. V. (2016). A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. Journal of AOAC International, 99(3), 738–743.

    Article  CAS  Google Scholar 

  • Ministry of Health New Zealand. Nutrient reference values. URL: https://www.nrv.gov.au/nutrients. Accessed on 01 Aug 2019.

  • Murugkar, D. A. (2014). Effect of sprouting of soybean on the chemical composition and quality of soymilk and tofu. Journal of Food Science and Technology, 51(5), 915–921.

    Article  CAS  PubMed  Google Scholar 

  • Napoleão, T. H., dos Santos-Filho, T. G., Pontual, E. V., da Silva Ferreira, R., Coelho, L. C. B. B., & Paiva, P. M. G. (2013). Affinity matrices of Cratylia mollis seed lectins for isolation of glycoproteins from complex protein mixtures. Applied Biochemistry and Biotechnology, 171(3), 744–755.

    Article  PubMed  CAS  Google Scholar 

  • Naviglio, D., Formato, A., Pucillo, G. P., & Gallo, M. (2013). A cyclically pressurised soaking process for the hydration and aromatisation of cannellini beans. Journal of Food Engineering, 116(3), 765–774.

    Article  CAS  Google Scholar 

  • Patterson, C. A., Curran, J., & Der, T. (2017). Effect of processing on antinutrient compounds in pulses. Cereal Chemistry, 94(1), 2–10.

    Article  CAS  Google Scholar 

  • Pesic, M., Vucelic-Radovic, B., Barac, M., Stanojevic, S., & Nedovic, V. (2007). Influence of different genotypes on trypsin inhibitor levels and activity in soybeans. Sensors, 7(1), 67–74.

    Article  CAS  Google Scholar 

  • Prodanov, M., Sierra, I., & Vidal-Valverde, C. (2004). Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chemistry, 84(2), 271–277.

    Article  CAS  Google Scholar 

  • Reddy, N. R., Pierson, M. D., Sathe, S. K., & Salunkhe, D. K. (1984). Chemical, nutritional and physiological aspects of dry bean carbohydrates—a review. Food Chemistry, 13(1), 25–68.

    Article  CAS  Google Scholar 

  • Rehinan, Z.-U., Rashid, M., & Shah, W. (2004). Insoluble dietary fibre components of food legumes as affected by soaking and cooking processes. Food Chemistry, 85(2), 245–249.

    Article  CAS  Google Scholar 

  • Schlemmer, U., Frølich, W., Prieto, R. M., & Grases, F. (2009). Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Molecular Nutrition & Food Research, 53(S2), S330–S375.

    Article  Google Scholar 

  • Segev, A., Badani, H., Galili, L., Hovav, R., Kapulnik, Y., Shomer, I., & Galili, S. (2011). Total phenolic content and antioxidant activity of Chickpea (Cicer arietinum L.) as affected by soaking and cooking conditions. Food and Nutrition Sciences, 2(7), 724.

    Article  CAS  Google Scholar 

  • Shi, L., Mu, K., Arntfield, S. D., & Nickerson, M. T. (2017). Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. Journal of Food Science and Technology, 54(4), 1014–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, L., Arntfield, S. D., & Nickerson, M. (2018). Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Research International, 107, 660–668.

    Article  CAS  PubMed  Google Scholar 

  • Sreerama, Y. N., Neelam, D. A., Sashikala, V. B., & Pratape, V. M. (2010). Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: Seed coat phenolics and their distinct modes of enzyme inhibition. Journal of Agricultural and Food Chemistry, 58(7), 4322–4330.

    Article  CAS  PubMed  Google Scholar 

  • Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450–460.

    Article  CAS  Google Scholar 

  • Turnlund, J. R., Keyes, W. R., Peiffer, G. L., & Chiang, G. (1995). Molybdenum absorption, excretion, and retention studied with stable isotopes in young men during depletion and repletion. The American Journal of Clinical Nutrition, 61(5), 1102–1109.

    Article  CAS  PubMed  Google Scholar 

  • Valdebouze, P., Bergeron, E., Gaborit, T., & Delort-Laval, J. (1980). Content and distribution of trypsin inhibitors and hemagglutinins in some legume seeds. Canadian Journal of Plant Science, 60(2), 695–701.

    Article  CAS  Google Scholar 

  • Wang, N., Hatcher, D. W., Tyler, R. T., Toews, R., & Gawalko, E. J. (2010). Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International, 43(2), 589–594.

    Article  CAS  Google Scholar 

  • Whelton, A. J., Dietrich, A. M., Burlingame, G. A., Schechs, M., & Duncan, S. E. (2007). Minerals in drinking water: Impacts on taste and importance to consumer health. Water Science and Technology, 55(5), 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Xu, B., & Chang, S. K. (2008). Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chemistry, 110(1), 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Prasad, K. N., Xie, H., Lin, S., & Jiang, Y. (2011). Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chemistry, 126(2), 590–594.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Roger Cresswell and Lynne Clucas for analysing the mineral profile of legume soaking water. The author also thank Kaviya Sathyanarayanan for quantifying phytic acid and Lirisha Vinola Dsouza for analysing trypsin inhibitor and Letitia Stipkovits for planning their experimental design. Funding was provided by Lincoln University in support of the courses “FOOD 699 – Research Placement”. Finally, acknowledgments go to Mingyu Chen and Xiong Dan for contributing to the scientific discussion of carbohydrates and minerals, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Serventi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Serventi, L. (2020). Soaking Water Composition. In: Upcycling Legume Water: from wastewater to food ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-42468-8_3

Download citation

Publish with us

Policies and ethics