Skip to main content

Design of Auxetic Coronary Stents by Topology Optimization

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine (MICCAI 2019, MICCAI 2018)

Abstract

Coronary artery stents are the most important implantation devices for the practice of the interventional cardiology to treat coronary artery disease (CAD) since the mid-1980s. However, the problems of stent thrombosis (ST) and in-stent restenosis (ISR) still exist. In addition to the reasons of implanted materials and coatings, mechanical and structural factors are also important factors and responsible for the complications, such as inadequate stent expansion, incomplete stent apposition and stent fracture in design. This research aims to develop a concurrent topology optimization by a parametric level set method associated with numerical homogenization method, to generate novel architectures for self-expanding (SE) stents with mechanical auxetic metamaterials. The topological design is firstly implemented in MATLAB, and then the optimized architecture is further improved and optimized in the commercial software ANSYS. The final stenting structure is numerically validated to demonstrate the effectiveness of the design method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.T. Dotter, M.P. Judkins, Transluminal treatment of arteriosclerotic obstruction: Description of a new technic and a preliminary report of its application. Circulation 30(5), 654–670 (1964)

    Google Scholar 

  2. A. Grüntzig, Transluminal dilatation of coronary-artery stenosis. Lancet 311(8058), 263 (1978)

    Google Scholar 

  3. U. Sigwart et al., Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty. N. Engl. J. Med. 316(12), 701–706 (1987)

    Google Scholar 

  4. G.S. Roubin et al., Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation 85(3), 916–927 (1992)

    Google Scholar 

  5. P.W. Serruys et al., A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med. 331(8), 489–495 (1994)

    Google Scholar 

  6. D.L. Fischman et al., A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 331(8), 496–501 (1994)

    Google Scholar 

  7. D. J. Moliterno, Healing Achilles—sirolimus versus paclitaxel. (2005), Mass Medical Soc.

    Google Scholar 

  8. C. Stettler et al., Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis. Lancet 370(9591), 937–948 (2007)

    Google Scholar 

  9. L. Mauri et al., Stent thrombosis in randomized clinical trials of drug-eluting stents. N. Engl. J. Med. 356(10), 1020–1029 (2007)

    Google Scholar 

  10. S. Cook et al., Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120(5), 391–399 (2009)

    Google Scholar 

  11. S. McMahon et al., Bio-resorbable polymer stents: A review of material progress and prospects. Prog. Polym. Sci. 83, 79–96 (2018)

    Google Scholar 

  12. A. Siiki, J. Sand, J. Laukkarinen, A systematic review of biodegradable biliary stents: Promising biocompatibility without stent removal. Eur. J. Gastroenterol. Hepatol. 30(8), 813–818 (2018)

    Google Scholar 

  13. S.-H. Kang et al., Biodegradable-polymer drug-eluting stents vs. bare metal stents vs. durable-polymer drug-eluting stents: A systematic review and Bayesian approach network meta-analysis. Eur. Heart J. 35(17), 1147–1158 (2014)

    Google Scholar 

  14. T. Duerig, D. Tolomeo, M. Wholey, An overview of superelastic stent design. Minim. Invasive Ther. Allied Technol. 9(3–4), 235–246 (2000)

    Google Scholar 

  15. M. Joner et al., Histopathologic evaluation of nitinol self-expanding stents in an animal model of advanced atherosclerotic lesions. EuroIntervention 5(6), 737–744 (2010)

    Google Scholar 

  16. R.A. Schatz et al., Clinical experience with the Palmaz-Schatz coronary stent. Initial results of a multicenter study. Circulation 83(1), 148–161 (1991)

    Google Scholar 

  17. S. Garg, P.W. Serruys, Coronary stents: Looking forward. J. Am. Coll. Cardiol. 56(10 Supplement), S43–S78 (2010)

    Google Scholar 

  18. S. Garg, P.W. Serruys, Coronary stents: Current status. J. Am. Coll. Cardiol. 56(10 Supplement), S1–S42 (2010)

    Google Scholar 

  19. R. Lakes, Advances in negative Poisson’s ratio materials. Adv. Mater. 5(4), 293–296 (1993)

    Google Scholar 

  20. K.E. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000)

    Google Scholar 

  21. R. Lakes, Response: Negative Poisson’s ratio materials. Science 238(4826), 551–551 (1987)

    ADS  Google Scholar 

  22. W. Yang et al., Review on auxetic materials. J. Mater. Sci. 39(10), 3269–3279 (2004)

    ADS  Google Scholar 

  23. M. Zhou, G. Rozvany, The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89(1–3), 309–336 (1991)

    ADS  Google Scholar 

  24. M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69(9–10), 635–654 (1999)

    ADS  MATH  Google Scholar 

  25. Y.M. Xie, G.P. Steven, A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)

    Google Scholar 

  26. J.A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  27. M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  28. G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  29. J. Guedes, N. Kikuchi, Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput. Methods Appl. Mech. Eng. 83(2), 143–198 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  30. O. Sigmund, Materials with prescribed constitutive parameters: An inverse homogenization problem. Int. J. Solids Struct. 31(17), 2313–2329 (1994)

    MathSciNet  MATH  Google Scholar 

  31. J. Chen, Y. Huang, M. Ortiz, Fracture analysis of cellular materials: A strain gradient model. J. Mech. Phys. Solids 46(5), 789–828 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  32. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Z. Luo et al., Shape and topology optimization of compliant mechanisms using a parameterization level set method. J. Comput. Phys. 227(1), 680–705 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Z. Luo et al., A level set-based parameterization method for structural shape and topology optimization. Int. J. Numer. Methods Eng. 76(1), 1–26 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Z. Luo, L. Tong, Z. Kang, A level set method for structural shape and topology optimization using radial basis functions. Comput. Struct. 87(7–8), 425–434 (2009)

    Google Scholar 

  36. H. Wendland, Computational aspects of radial basis function approximation, in Studies in Computational Mathematics, (Elsevier, UK, 2006), pp. 231–256

    Google Scholar 

  37. X. Wang, Y. Mei, M.Y. Wang, Level-set method for design of multi-phase elastic and thermoelastic materials. Int. J. Mech. Mater. Des. 1(3), 213–239 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, H., Luo, Z. (2020). Design of Auxetic Coronary Stents by Topology Optimization. In: Miller, K., Wittek, A., Joldes, G., Nash, M., Nielsen, P. (eds) Computational Biomechanics for Medicine. MICCAI MICCAI 2019 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-42428-2_3

Download citation

Publish with us

Policies and ethics