Skip to main content

On Spinorial Representations of Involutory Subalgebras of Kac–Moody Algebras

  • Chapter
  • First Online:

Part of the book series: Moscow Lectures ((ML,volume 5))

Abstract

The representation theory of involutory (or ‘maximal compact’) subalgebras of infinite-dimensional Kac–Moody algebras is largely terra incognita, especially with regard to fermionic (double-valued) representations. Nevertheless, certain distinguished such representations feature prominently in proposals of possible symmetries underlying M theory, both at the classical and the quantum level. Here we summarise recent efforts to study spinorial representations systematically, most notably for the case of the hyperbolic Kac–Moody algebra E 10 where spinors of the involutory subalgebra K(E 10) are expected to play a role in describing algebraically the fermionic sector of D = 11 supergravity and M theory. Although these results remain very incomplete, they also point towards the beginning of a possible explanation of the fermion structure observed in the Standard Model of Particle Physics.

Based on lectures given by H. Nicolai at the School Partition Functions and Automorphic Forms, BLTP JINR, Dubna, Russia, 28 January–2 February 2018.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Here and in the remainder of these notes, we abuse notation by using E n to denote both the Lie algebra and the associated group.

  2. 2.

    In fact, the multiplicities are not even known in closed form for the simplest such algebra with Cartan matrix

    $$\displaystyle \begin{aligned} A = \begin{pmatrix} 2 & -3\\ -3 & 2 \end{pmatrix} \,. \end{aligned}$$
  3. 3.

    We use the mostly plus signature for Minkowski space-time and 𝜖 01…d = +1 with Lorentz indices . The Γ-matrices are real n d × n d matrices with n 3 = 4 , n 4 = n 5 = 8 , n 6 = ⋯ = n 9 = 16 and n 10 = 32 (see e.g. [31, 32]; for yet higher d the numbers follow from Bott periodicity n d+8 = 16n d [33]).

  4. 4.

    More precisely, one should consider the coefficients of anholonomy but for our discussion here this difference does not matter.

  5. 5.

    An alternative proposal based on the non-hyperbolic ‘very extended’ Kac–Moody algebra E 11 was put forward in [2].

  6. 6.

    For K(E 11), the corresponding quotient Lie algebra is \(\mathfrak {sl}(32)\) [16].

  7. 7.

    We are indebted to R. Köhl for discussions on this point.

  8. 8.

    We thank G. Bossard for pointing this out to us.

  9. 9.

    We note that each choice t = ±1 yields an irreducible 16-component chiral spinor of K(E 9) but we treat the two choices together as they result from the decomposition of the 32 components of the K(E 10) Dirac spinor.

  10. 10.

    With these extra components we would indeed recover the counting of the spin-\(\frac 32\) representation of K(E 10): 2 × (16 + 128 + 16) = 320.

References

  1. B. Julia, Group disintegrations. Conf. Proc. C8006162, 331–350 (1980)

    Google Scholar 

  2. P.C. West, E 11 and M theory. Class. Quant. Grav. 18, 4443–4460 (2001). arXiv:hep-th/0104081[hep-th]. http://dx.doi.org/10.1088/0264-9381/18/21/305

  3. T. Damour, M. Henneaux, H. Nicolai, E 10 and a ‘small tension expansion’ of M theory. Phys. Rev. Lett. 89, 221601 (2002). arXiv:hep-th/0207267 [hep-th]. http://dx.doi.org/10.1103/PhysRevLett.89.221601

  4. S. de Buyl, M. Henneaux, L. Paulot, Hidden symmetries and Dirac fermions. Class. Quant. Grav. 22, 3595–3622 (2005). arXiv:hep-th/0506009 [hep-th]. http://dx.doi.org/10.1088/0264-9381/22/17/018

  5. T. Damour, A. Kleinschmidt, H. Nicolai, Hidden symmetries and the fermionic sector of eleven-dimensional supergravity. Phys. Lett. B634, 319–324 (2006). arXiv:hep-th/0512163 [hep-th]. http://dx.doi.org/10.1016/j.physletb.2006.01.015

  6. S. de Buyl, M. Henneaux, L. Paulot, Extended E 8 invariance of 11-dimensional supergravity. J. High Energy Phys. 02, 056 (2006). arXiv:hep-th/0512292 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2006/02/056

  7. T. Damour, A. Kleinschmidt, H. Nicolai, K(E 10), supergravity and fermions. J. High Energy Phys. 08, 046 (2006). arXiv:hep-th/0606105 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2006/08/046

  8. A. Kleinschmidt, H. Nicolai, IIA and IIB spinors from K(E 10). Phys. Lett. B637, 107–112 (2006). arXiv:hep-th/0603205 [hep-th]. http://dx.doi.org/10.1016/j.physletb.2006.04.007

  9. A. Kleinschmidt, Unifying R-symmetry in M-theory, in 15th International Congress on Mathematical Physics (ICMP06) Rio de Janeiro, Brazil, August 6–11, 2006 (2007). arXiv:hep-th/0703262 [hep-th]. https://doi.org/10.1007/978-90-481-2810-5

  10. K.A. Meissner, H. Nicolai, Standard model fermions and N = 8 supergravity. Phys. Rev. D91, 065029 (2015). arXiv:1412.1715 [hep-th]. http://dx.doi.org/10.1103/PhysRevD.91.065029

  11. A. Kleinschmidt, H. Nicolai, Standard model fermions and K(E 10). Phys. Lett. B747, 251–254 (2015). arXiv:1504.01586 [hep-th]. http://dx.doi.org/10.1016/j.physletb.2015.06.005

  12. K.A. Meissner, H. Nicolai, Standard model fermions and infinite-dimensional R-symmetries. Phys. Rev. Lett. 121(9), 091601 (2018). arXiv:1804.09606 [hep-th]. http://dx.doi.org/10.1103/PhysRevLett.121.091601

  13. A. Kleinschmidt, H. Nicolai, On higher spin realizations of K(E 10). J. High Energy Phys. 08, 041 (2013). arXiv:1307.0413 [hep-th]. http://dx.doi.org/10.1007/JHEP08(2013)041

  14. A. Kleinschmidt, H. Nicolai, N.K. Chidambaram, Canonical structure of the E 10 model and supersymmetry. Phys. Rev. D91(8), 085039 (2015). arXiv:1411.5893 [hep-th]. http://dx.doi.org/10.1103/PhysRevD.91.085039

  15. A. Kleinschmidt, H. Nicolai, Higher spin representations of K(E 10), in Proceedings, International Workshop on Higher Spin Gauge Theories: Singapore, Singapore, November 4–6, 2015 (2017), pp. 25–38. arXiv:1602.04116 [hep-th]. http://dx.doi.org/10.1142/9789813144101_0003

  16. P.C. West, E 11, SL(32) and central charges. Phys. Lett. B575, 333–342 (2003). arXiv:hep-th/0307098 [hep-th]. http://dx.doi.org/10.1016/j.physletb.2003.09.059

  17. H. Nicolai, H. Samtleben, On K(E 9). Q. J. Pure Appl. Math. 1, 180–204 (2005). arXiv:hep-th/0407055 [hep-th]. http://dx.doi.org/10.4310/PAMQ.2005.v1.n1.a8

  18. A. Kleinschmidt, H. Nicolai, J. Palmkvist, K(E 9) from K(E 10). J. High Energy Phys. 06, 051 (2007). arXiv:hep-th/0611314 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2007/06/051

  19. T. Damour, C. Hillmann, Fermionic Kac-Moody billiards and supergravity. J. High Energy Phys. 08, 100 (2009), arXiv:0906.3116 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2009/08/100

  20. G. Hainke, R. Köhl, P. Levy, Generalized spin representations. Münster J. Math. 8(1), 181–210 (2015). With an appendix by Max Horn and Ralf Köhl. http://dx.doi.org/10.17879/65219674985

  21. T. Damour, P. Spindel, Quantum supersymmetric cosmology and its hidden Kac–Moody structure. Class. Quant. Grav. 30, 162001 (2013), arXiv:1304.6381 [gr-qc]. http://dx.doi.org/10.1088/0264-9381/30/16/162001

  22. T. Damour, P. Spindel, Quantum supersymmetric Bianchi IX cosmology. Phys. Rev. D90(10), 103509 (2014). arXiv:1406.1309 [gr-qc]. http://dx.doi.org/10.1103/PhysRevD.90.103509

  23. D. Ghatei, M. Horn, R. Köhl, S. Weiß, Spin covers of maximal compact subgroups of Kac–Moody groups and spin-extended Weyl groups. J. Group Theory 20(3), 401–504 (2017). http://dx.doi.org/10.1515/jgth-2016-0034

    Article  MathSciNet  Google Scholar 

  24. R. Lautenbacher, R. Köhl, Extending generalized spin representations. J. Lie Theory 28, 915–940 (2018). e-prints. hrefhttp://arXiv:1705.00118 [math.RT] arXiv:1705.00118 [math.RT]

    Google Scholar 

  25. V.G. Kac, Infinite Dimensional Lie Algebras, 2nd edn. (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  26. S. Berman, On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras. Comm. Algebra 17(12), 3165–3185 (1989). http://dx.doi.org/10.1080/00927878908823899

    Article  MathSciNet  Google Scholar 

  27. A. Kleinschmidt, H. Nicolai, Gradient representations and affine structures in AE n. Class. Quant. Grav. 22, 4457–4488 (2005). arXiv:hep-th/0506238 [hep-th]. http://dx.doi.org/10.1088/0264-9381/22/21/004

  28. B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 160, 1113–1148 (1967). [3, 93 (1987)]. http://dx.doi.org/10.1103/PhysRev.160.1113

  29. T. Damour, S. de Buyl, M. Henneaux, C. Schomblond, Einstein billiards and overextensions of finite dimensional simple Lie algebras. J. High Energy Phys. 08, 030 (2002). arXiv:hep-th/0206125 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2002/08/030

  30. P. Goddard, D.I. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics. Int. J. Mod. Phys. A1, 303 (1986). [86 (1986)]. http://dx.doi.org/10.1142/S0217751X86000149

  31. J. Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2007). http://dx.doi.org/10.1017/CBO9780511618123

  32. B. de Wit, A.K. Tollsten, H. Nicolai, Locally supersymmetric D = 3 nonlinear sigma models. Nucl. Phys. B392, 3–38 (1993). arXiv:hep-th/9208074 [hep-th]. http://dx.doi.org/10.1016/0550-3213(93)90195-U

  33. M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology 3, S3–S38 (1964). http://dx.doi.org/10.1016/0040-9383(64)90003-5

    Article  MathSciNet  Google Scholar 

  34. T. Damour, M. Henneaux, H. Nicolai, Cosmological billiards. Class. Quant. Grav. 20, R145–R200 (2003). arXiv:hep-th/0212256 [hep-th]. http://dx.doi.org/10.1088/0264-9381/20/9/201

  35. S. Viswanath, Embeddings of hyperbolic Kac-Moody algebras into E 10. Lett. Math. Phys. 83(2), 139–148 (2008). http://dx.doi.org/10.1007/s11005-007-0214-7

    Article  MathSciNet  Google Scholar 

  36. C. Hillmann, A. Kleinschmidt, Pure type I supergravity and DE 10. Gen. Rel. Grav. 38, 1861–1885 (2006). arXiv:hep-th/0608092 [hep-th]. http://dx.doi.org/10.1007/s10714-006-0352-8

  37. A.J. Feingold, I.B. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2. Math. Ann. 263(1), 87–144 (1983). http://dx.doi.org/10.1007/BF01457086

    Article  MathSciNet  Google Scholar 

  38. S. Mizoguchi, K. Mohri, Y. Yamada, Five-dimensional supergravity and hyperbolic Kac-Moody algebra \(G_2^H\). Class. Quant. Grav. 23, 3181–3194 (2006), arXiv:hep-th/0512092 [hep-th]. http://dx.doi.org/10.1088/0264-9381/23/9/026

  39. S. Mizoguchi, N. Ohta, More on the similarity between D = 5 simple supergravity and M theory. Phys. Lett. B441, 123–132 (1998). arXiv:hep-th/9807111 [hep-th]. http://dx.doi.org/10.1016/S0370-2693(98)01122-8

  40. A.H. Chamseddine, H. Nicolai, Coupling the SO(2) supergravity through dimensional reduction. Phys. Lett. 96B, 89–93 (1980). [Erratum: Phys. Lett. B 785, 631 (2018). arXiv:1808.08955]. http://dx.doi.org/10.1016/0370-2693(80)90218-X,10.1016/j.physletb.2018.05.029

  41. E. Cremmer, Supergravities in 5 dimensions, in Superspace and Supergravity, Proceedings of Nuffield Workshop in Cambridge (UK), June 16–July 12, 1980, ed. by S. Hawking, M. Rocek (Cambridge University Press, Cambridge, 1980)

    Google Scholar 

  42. A. Kleinschmidt, D. Roest, Extended symmetries in supergravity: the semi-simple case. J. High Energy Phys. 07, 035 (2008). arXiv:0805.2573 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2008/07/035

  43. T. Damour, M. Henneaux, E 10, BE 10 and arithmetical chaos in superstring cosmology. Phys. Rev. Lett. 86, 4749–4752 (2001). arXiv:hep-th/0012172 [hep-th]. http://dx.doi.org/10.1103/PhysRevLett.86.4749

  44. F. Englert, L. Houart, G +++ invariant formulation of gravity and M theories: exact BPS solutions. J. High Energy Phys. 01, 002 (2004). arXiv:hep-th/0311255 [hep-th]. http://dx.doi.org/10.1088/1126-6708/2004/01/002

  45. A. Keurentjes, E 11: sign of the times. Nucl. Phys. B697, 302–318 (2004). arXiv:hep-th/0402090 [hep-th]. http://dx.doi.org/10.1016/j.nuclphysb.2004.06.058

  46. H. Nicolai, Two-dimensional gravities and supergravities as integrable system. Lect. Notes Phys. 396, 231–273 (1991). http://dx.doi.org/10.1007/3-540-54978-1_12

    Article  MathSciNet  Google Scholar 

  47. M. Gell-Mann, From renormalizability to calculability?, in Shelter Island 1983, Proceedings, Quantum Field Theory and The Fundamental Problems Of Physics, ed. by R. Jackiw, N.N. Khuri, S. Weinberg, E. Witten (Dover Publications, New York, 1986), pp. 3–23

    Google Scholar 

  48. K.A. Meissner, H. Nicolai, Planck mass charged gravitino dark matter (2019) arXiv:1809.01441 [hep-ph]

Download references

Acknowledgements

H. Nicolai would like to thank V. Gritsenko and V. Spiridonov for their hospitality in Dubna. His work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740209). We are grateful to G. Bossard, R. Köhl and H.A. Samtleben for comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kleinschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kleinschmidt, A., Nicolai, H., Viganò, A. (2020). On Spinorial Representations of Involutory Subalgebras of Kac–Moody Algebras. In: Gritsenko, V.A., Spiridonov, V.P. (eds) Partition Functions and Automorphic Forms. Moscow Lectures, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-42400-8_4

Download citation

Publish with us

Policies and ethics