Skip to main content

Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions

  • Chapter
  • First Online:
The Biochemistry of Retinoid Signaling III

Part of the book series: Subcellular Biochemistry ((SCBI,volume 95))

Abstract

Fetal Alcohol Spectrum Disorder (FASD) is a complex set of developmental malformations, neurobehavioral anomalies and mental disabilities induced by exposing human embryos to alcohol during fetal development. Several experimental models and a series of developmental and biochemical approaches have established a strong link between FASD and reduced retinoic acid (RA) signaling. RA signaling is involved in the regulation of numerous developmental decisions from patterning of the anterior–posterior axis, starting at gastrulation, to the differentiation of specific cell types within developing organs, to adult tissue homeostasis. Being such an important regulatory signal during embryonic development, mutations or environmental perturbations that affect the level, timing or location of the RA signal can induce multiple and severe developmental malformations. The evidence connecting human syndromes to reduced RA signaling is presented here and the resulting phenotypes are compared to FASD. Available data suggest that competition between ethanol clearance and RA biosynthesis is a major etiological component in FASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PAE:

Prenatal Alcohol Exposure

FAS:

Fetal Alcohol Syndrome

pFAS:

partial Fetal Alcohol Syndrome

FASD:

Fetal Alcohol Spectrum Disorder

IUGR:

Intrauterine Growth Restriction

ARND:

Alcohol-Related Neurodevelopmental Disorder

ARBD:

Alcohol-Related Birth Defects

CNS:

Central Nervous System

ADH:

Alcohol Dehydrogenase

ALDH:

Aldehyde Dehydrogenase

RALDH:

Retinaldehyde Dehydrogenase

SDR:

Short-chain Dehydrogenase/Reductase

DEAB:

4-Diethylaminobenzaldehyde

RA:

Retinoic Acid

RAR:

Retinoic Acid Receptor

RXR:

Retinoid X Receptor

RARE:

Retinoic Acid Responsive Element

RDH:

Retinol Dehydrogenase

References

  • Abel EL (1997) Was the fetal alcohol syndrome recognized in the ancient Near East? Alcohol Alcohol 32:3–7 Xenopus

    Article  CAS  PubMed  Google Scholar 

  • Alexandre D, Clarke JD, Oxtoby E, Yan YL, Jowett T, Holder N (1996) Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development (Cambridge, England) 122:735–746

    CAS  Google Scholar 

  • Anchan RM, Drake DP, Haines CF, Gerwe EA, LaMantia AS (1997) Disruption of local retinoid-mediated gene expression accompanies abnormal development in the mammalian olfactory pathway. J Comp Neurol 379:171–184

    Google Scholar 

  • Andersen A-MN, Andersen PK, Olsen J, Grønbæk M, Strandberg-Larsen K (2012) Moderate alcohol intake during pregnancy and risk of fetal death. Int J Epidemiol 41:405–413

    Article  PubMed  Google Scholar 

  • Ang HL, Duester G (1999) Stimulation of premature retinoic acid synthesis in Xenopus embryos following premature expression of aldehyde dehydrogenase ALDH1. Eur J Biochem/FEBS 260:227–234

    Article  CAS  Google Scholar 

  • Arfsten DP, Silbergeld EK, Loffredo CA (2004) Fetal ADH2*3, maternal alcohol consumption, and fetal growth. Int J Toxicol 23:47–54

    Article  CAS  PubMed  Google Scholar 

  • Astley SJ, Clarren SK (2000) Diagnosing the full spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol 35:400–410

    Article  CAS  PubMed  Google Scholar 

  • Audouze K, Taboureau O, Grandjean P (2018) A systems biology approach to predictive developmental neurotoxicity of a larvicide used in the prevention of Zika virus transmission. Toxicol Appl Pharmacol 354:56–63

    Google Scholar 

  • Bailey BA, Sokol RJ (2011) Prenatal alcohol exposure and miscarriage, stillbirth, preterm delivery, and sudden infant death syndrome. Alcohol Res Health: J Natl Inst Alcohol Abus Alcohol 34:86–91

    Google Scholar 

  • Balbo S, Brooks PJ (2015) Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis. Adv Exp Med Biol 815:71–88

    Article  CAS  PubMed  Google Scholar 

  • Baldini A (2005) Dissecting contiguous gene defects: TBX1. Curr Opin Genet Dev 15:279–284

    Article  CAS  PubMed  Google Scholar 

  • Banakar MK, Kudlur NS, George S (2009) Fetal alcohol spectrum disorder(FASD. Indian J Pediatr 76:1173–1175

    Article  PubMed  Google Scholar 

  • Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development (Cambridge, England) 128:3081–3094

    CAS  Google Scholar 

  • Belyaeva OV, Lee S-A, Adams MK, Chang C, Kedishvili NY (2012) Short chain dehydrogenase/reductase rdhe2 is a novel retinol dehydrogenase essential for frog embryonic development. J Biol Chem 287:9061–9071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaner WS, Li Y, Brun P-J, Yuen JJ, Lee S-A, Clugston RD (2016) Vitamin A absorption, storage and mobilization. Sub-Cell Biochem 81:95–125

    Article  CAS  Google Scholar 

  • Brainstorm Consortium, Anttila V, Bulik-Sullivan B, Finucane H K, Walters R K, Bras J, Duncan L et al (2018) Analysis of shared heritability in common disorders of the brain. Science 360:eaap8757

    Google Scholar 

  • Brecher AS, Hellman K, Basista MH (1997) A perspective on acetaldehyde concentrations and toxicity in man and animals. Alcohol (Fayetteville, N.Y.) 14:493–496

    Google Scholar 

  • Brown JM, Bland R, Jonsson E, Greenshaw AJ (2018) A brief history of awareness of the link between alcohol and fetal alcohol spectrum disorder. Can J Psychiatry 64:706743718777403

    Google Scholar 

  • Caputo C, Wood E, Jabbour L (2016) Impact of fetal alcohol exposure on body systems: a systematic review. Birth Defects Res Part C Embryo Today: Rev 108:174–180

    Article  CAS  Google Scholar 

  • Carron C, Shi D-L (2016) Specification of anteroposterior axis by combinatorial signaling during Xenopus development. Wiley Interdiscip Rev Dev Biol 5:150–168

    Article  CAS  PubMed  Google Scholar 

  • Cederbaum AI (2012) Alcohol metabolism. Clin Liver Dis 16:667–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J, Tiziano FD et al (2009) Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 30:E673–E681

    Article  PubMed  Google Scholar 

  • Chater-Diehl EJ, Laufer BI, Singh SM (2017) Changes to histone modifications following prenatal alcohol exposure: an emerging picture. Alcohol (Fayetteville, N.Y.) 60:41–52

    Google Scholar 

  • Chaudhuri JD (2000) Alcohol and the developing fetus–a review. Med Sci Monit: Int Med J Exp Clin Res 6:1031–1041

    CAS  Google Scholar 

  • Chawla B, Swain W, Williams AL, Bohnsack BL (2018) Retinoic acid maintains function of neural crest-derived ocular and craniofacial structures in adult zebrafish. Investig Ophthalmol Vis Sci 59:1924–1935

    Article  CAS  Google Scholar 

  • Chen Y, Pollet N, Niehrs C, Pieler T (2001) Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 101:91–103

    Article  CAS  PubMed  Google Scholar 

  • Chithalen JV, Luu L, Petkovich M, Jones G (2002) HPLC-MS/MS analysis of the products generated from all-trans-retinoic acid using recombinant human CYP26A. J Lipid Res 43:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Christoffel KK, Salafsky I (1975) Fetal alcohol syndrome in dizygotic twins. J Pediatr 87:963–967

    Article  CAS  PubMed  Google Scholar 

  • Chudley AE (2018) Diagnosis of fetal alcohol spectrum disorder: current practices and future considerations. Biochem Cell Biol (Biochim et Biol Cell) 96:231–236

    Article  CAS  Google Scholar 

  • Clagett-Dame M, Knutson D (2011) Vitamin A in reproduction and development. Nutrients 3:385–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon RA, Rossant J (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116:357–368

    CAS  PubMed  Google Scholar 

  • Cook JL, Green CR, Lilley CM, Anderson SM, Baldwin ME, Chudley AE, Conry JL et al (2016) Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. Can Med Assoc J 188:191–197

    Article  Google Scholar 

  • Crabb DW, Matsumoto M, Chang D, You M (2004) Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 63:49–63

    Article  CAS  PubMed  Google Scholar 

  • Crandall JE, Goodman T, McCarthy DM, Duester G, Bhide PG, Dräger UC, McCaffery P (2011) Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex. J Neurochem 119:723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creech Kraft J, Schuh T, Juchau MR, Kimelman D (1994) Temporal distribution, localization and metabolism of all-trans-retinol, didehydroretinol and all-trans-retinal during Xenopus development. Biochem J 301(Pt 1):111–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creech Kraft J, Kimelman D, Juchau MR (1995) Xenopus laevis: a model system for the study of embryonic retinoid metabolism. II. Embryonic metabolism of all-trans-3,4-didehydroretinol to all-trans-3,4-didehydroretinoic acid. Drug Metab Dispos: Biol Fate Chem 23:83–89

    CAS  Google Scholar 

  • Cremin BJ, Jaffer Z (1981) Radiological aspects of the fetal alcohol syndrome. Pediatr Radiol 11:151–153

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Michaille J-J, Jiang W, Zile MH (2003) Retinoid receptors and vitamin A deficiency: differential patterns of transcription during early avian development and the rapid induction of RARs by retinoic acid. Dev Biol 260:496–511

    Article  CAS  PubMed  Google Scholar 

  • Das UG, Cronk CE, Martier SS, Simpson PM, McCarver DG (2004) Alcohol dehydrogenase 2*3 affects alterations in offspring facial morphology associated with maternal ethanol intake in pregnancy. Alcohol Clin Exp Res 28:1598–1606

    Article  CAS  PubMed  Google Scholar 

  • Davis-Anderson KL, Berger S, Lunde-Young ER, Naik VD, Seo H, Johnson GA, Steen H et al (2017) Placental proteomics reveal insights into fetal alcohol spectrum disorders. Alcohol Clin Exp Res 41:1551–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deitrich RA, Petersen D, Vasiliou V (2007) Removal of acetaldehyde from the body. Novartis Found Symp 285:23–40. Discussion 40

    Google Scholar 

  • Deltour L, Ang HL, Duester G (1996) Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J: Off Publ Fed Am Soc Exp Biol 10:1050–1057

    Article  CAS  Google Scholar 

  • Deltour L, Foglio MH, Duester G (1999) Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem 274:16796–16801

    Article  CAS  PubMed  Google Scholar 

  • Denny L, Coles S, Blitz R (2017) Fetal alcohol syndrome and fetal alcohol spectrum disorders. Am Fam Phys 96:515–522

    Google Scholar 

  • de Roos K, Sonneveld E, Compaan B, ten Berge D, Durston AJ, van der Saag PT (1999) Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech Dev 82:205–211

    Article  PubMed  Google Scholar 

  • Di Renzo F, Broccia ML, Giavini E, Menegola E (2007) Citral, an inhibitor of retinoic acid synthesis, attenuates the frequency and severity of branchial arch abnormalities induced by triazole-derivative fluconazole in rat embryos cultured in vitro. Reprod Toxicol 24:326–332

    Article  PubMed  Google Scholar 

  • Dobbs-McAuliffe B, Zhao Q, Linney E (2004) Feedback mechanisms regulate retinoic acid production and degradation in the zebrafish embryo. Mech Dev 121:339–350

    Article  CAS  PubMed  Google Scholar 

  • Driscoll DA, Salvin J, Sellinger B, Budarf ML, McDonald-McGinn DM, Zackai EH, Emanuel BS (1993) Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet 30:813–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duester G (1991) A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol Clin Exp Res 15:568–572

    Article  CAS  PubMed  Google Scholar 

  • Dupé V, Matt N, Garnier J-M, Chambon P, Mark M, Ghyselinck NB (2003) A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci USA 100:14036–14041

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    Article  CAS  PubMed  Google Scholar 

  • Eberhart JK, Parnell SE (2016) The genetics of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 40:1154–1165

    Article  PubMed  PubMed Central  Google Scholar 

  • Edenberg HJ, Foroud T (2013) Genetics and alcoholism. Nat Rev. Gastroenterol Hepatol 10:487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edenberg HJ, McClintick JN (2018) Alcohol dehydrogenases, aldehyde dehydrogenases and alcohol use disorders: a critical review. Alcohol Clin Exp Res 42:2281–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrhart F, Roozen S, Verbeek J, Koek G, Kok G, van Kranen H, Evelo CT et al (2019) Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders. Mol Psychiatry 24:10–17

    Article  CAS  PubMed  Google Scholar 

  • Elsea SH, Williams SR (2011) Smith-Magenis syndrome: haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways. Exp Rev Mol Med 13:e14

    Article  CAS  Google Scholar 

  • Fainsod A, Kot-Leibovich H (2018) Xenopus embryos to study fetal alcohol syndrome, a model for environmental teratogenesis. Biochem Cell Biol (Biochim et Biol Cell) 96:77–87

    Article  CAS  Google Scholar 

  • Feng W, Shao C, Liu H-K (2017) Versatile Roles of the Chromatin Remodeler CHD7 during Brain Development and Disease. Front Mol Neurosci 10:309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Féré CH (1895) Etudes experimentales sur l’influence teratogene ou degenerative des alcools et des essences sur l’embryon de poulet. J de IAnatomie et de la Physiol 31:161–186

    Google Scholar 

  • Fernandes Y, Buckley DM, Eberhart JK (2018) Diving into the world of alcohol teratogenesis: a review of zebrafish models of fetal alcohol spectrum disorder. Biochem Cell Biol (Biochim et Biol Cell) 96:88–97

    Article  CAS  Google Scholar 

  • Flentke GR, Smith SM (2018) The avian embryo as a model for fetal alcohol spectrum disorder. Biochem Cell Biol (Biochim et Biol Cell) 96:98–106

    Article  CAS  Google Scholar 

  • Fransén K, Franzén P, Magnuson A, Elmabsout AA, Nyhlin N, Wickbom A, Curman B et al (2013) Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn’s disease. PLoS ONE 8:e72739

    Article  PubMed  PubMed Central  Google Scholar 

  • Gavrilova R, Babovic N, Lteif A, Eidem B, Kirmani S, Olson T, Babovic-Vuksanovic D (2009) Vitamin A deficiency in an infant with PAGOD syndrome. Am J Med Genet Part A 149A:2241–2247

    Article  CAS  PubMed  Google Scholar 

  • Ghyselinck NB, Duester G (2019) Retinoic acid signaling pathways. Development 146

    Google Scholar 

  • Gilbert-Barness E (2010) Teratogenic causes of malformations. Ann Clin Lab Sci 40:99–114

    CAS  PubMed  Google Scholar 

  • Girirajan S, Truong HT, Blanchard CL, Elsea SH (2009) A functional network module for Smith-Magenis syndrome. Clin Genet 75:364–374

    Article  CAS  PubMed  Google Scholar 

  • Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S et al (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González ER (1979) Skeletal defects and fetal alcohol syndrome. Arch Intern Med 959

    Google Scholar 

  • Goyal MM, Basak A (2010) Human catalase: looking for complete identity. Protein Cell 1:888–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandel H, Lun K, Rauch G-J, Rhinn M, Piotrowski T, Houart C, Sordino P et al (2002) Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development (Cambridge, England) 129:2851–2865

    CAS  Google Scholar 

  • Green RF, Stoler JM (2007) Alcohol dehydrogenase 1B genotype and fetal alcohol syndrome: a HuGE minireview. Am J Obstet Gynecol 197:12–25

    Article  CAS  PubMed  Google Scholar 

  • Grummer MA, Zachman RD (1990) The effect of maternal ethanol ingestion on fetal vitamin A in the rat. Pediatr Res 28:186–189

    Article  CAS  PubMed  Google Scholar 

  • Guerri C, Bazinet A, Riley EP (2009) Foetal Alcohol Spectrum Disorders and alterations in brain and behaviour. Alcohol Alcohol 44:108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerri C, Sanchis R (1985) Acetaldehyde and alcohol levels in pregnant rats and their fetuses. Alcohol (Fayetteville, NY) 2:267–270

    Article  CAS  Google Scholar 

  • Gupta KK, Gupta VK, Shirasaka T (2016) An Update on Fetal Alcohol Syndrome-Pathogenesis, Risks, and Treatment. Alcohol Clin Exp Res 40:1594–1602

    Article  CAS  PubMed  Google Scholar 

  • Hale F (1935) The relation of vitamin a to anophthalmos in pigs. Am J Ophthalmol 18:1087–1093

    Article  CAS  Google Scholar 

  • Halilagic A, Ribes V, Ghyselinck NB, Zile MH, Dollé P, Studer M (2007) Retinoids control anterior and dorsal properties in the developing forebrain. Dev Biol 303:362–375

    Article  CAS  PubMed  Google Scholar 

  • Halvorson MR, Noffsinger JK, Peterson CM (1993) Studies of whole blood-associated acetaldehyde levels in teetotalers. Alcohol (Fayetteville, NY) 10:409–413

    Article  CAS  Google Scholar 

  • Harcombe AA, Ramsay L, Kenna JG, Koskinas J, Why HJ, Richardson PJ, Weissberg PL et al (1995) Circulating antibodies to cardiac protein-acetaldehyde adducts in alcoholic heart muscle disease. Clin Sci (London, England: 1979) 88:263–268

    Google Scholar 

  • Harrison EH, Quadro L (2018) Apocarotenoids: emerging roles in mammals. Annu Rev Nutr 38:153–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris SR, Osborn JA, Weinberg J, Loock C, Junaid K (1993) Effects of prenatal alcohol exposure on neuromotor and cognitive development during early childhood: a series of case reports. Phys Therapy 73:608–617

    Article  CAS  Google Scholar 

  • Heller M, Burd L (2014) Review of ethanol dispersion, distribution, and elimination from the fetal compartment. Birth Defects Res Part A Clin Mol Teratol 100:277–283

    Article  CAS  Google Scholar 

  • Herrmann J, Pallister PD, Opitz JM (1980) Tetraectrodactyly and other skeletal manifestations in the fetal alcohol syndrome. Eur J Pediatr 133:221–226

    Article  CAS  PubMed  Google Scholar 

  • Hertwig O (1892) Urmund und Spina bifida. Archiv für Mikroskopische Anatomie 39:353–502

    Google Scholar 

  • Hoffmann T, Meyer RJ, Sorrell MF, Tuma DJ (1993) Reaction of acetaldehyde with proteins: formation of stable fluorescent adducts. Alcohol Clin Exp Res 17:69–74

    Article  CAS  PubMed  Google Scholar 

  • Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17:7361–7372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou N, Ren L, Gong M, Bi Y, Gu Y, Dong Z, Liu Y et al (2015) Vitamin A deficiency impairs spatial learning and memory: the mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 51:633–647

    Article  CAS  PubMed  Google Scholar 

  • Hoyme, H. E., W. O. Kalberg, A. J. Elliott, J. Blankenship, D. Buckley, A.-S. Marais, M. A. Manning, et al. 2016. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics 138

    Google Scholar 

  • Hurley TD, Edenberg HJ (2012) Genes encoding enzymes involved in ethanol metabolism. Alcohol Res Curr Rev 34:339–344

    Google Scholar 

  • Jacobson SW, Carr LG, Croxford J, Sokol RJ, Li T-K, Jacobson JL (2006) Protective effects of the alcohol dehydrogenase-ADH1B allele in children exposed to alcohol during pregnancy. J Pediatr 148:30–37

    Article  CAS  PubMed  Google Scholar 

  • Janesick A, Shiotsugu J, Taketani M, Blumberg B (2012) RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development 139:1213–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janesick, A, Nguyen TTL, Aisaki K, Igarashi K, Kitajima S, Chandraratna RAS, Kanno J, et al (2014) Active repression by RARγ signaling is required for vertebrate axial elongation. Development 141:2260–2270

    Google Scholar 

  • Jones KL, Smith DW (1973) Recognition of the fetal alcohol syndrome in early infancy. The Lancet 302:999–1001

    Article  CAS  Google Scholar 

  • Jones KL, Smith DW, Ulleland CN, Streissguth P (1973) Pattern of malformation in offspring of chronic alcoholic mothers. The Lancet 1:1267–1271

    Article  CAS  Google Scholar 

  • Joya X, Garcia-Algar O, Salat-Batlle J, Pujades C, Vall O (2015) Advances in the development of novel antioxidant therapies as an approach for fetal alcohol syndrome prevention. Birth Defects Res Part A Clin Mol Teratol 103:163–177

    Article  CAS  Google Scholar 

  • Jun S-R, Wassenaar TM, Wanchai V, Patumcharoenpol P, Nookaew I, Ussery DW (2017) Suggested mechanisms for Zika virus causing microcephaly: what do the genomes tell us? BMC Bioinform 18:471

    Article  CAS  Google Scholar 

  • Kalisch-Smith JI, Moritz KM (2018) Detrimental effects of alcohol exposure around conception: putative mechanisms. Biochem Cell Biol (Biochim et Biol Cell) 96:107–116

    Article  CAS  Google Scholar 

  • Kane CJM, Drew PD (2016) Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol 100:951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedishvili NY (2013) Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 54:1744–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedishvili NY, Gough WH, Davis WI, Parsons S, Li TK, Bosron WF (1998) Effect of cellular retinol-binding protein on retinol oxidation by human class IV retinol/alcohol dehydrogenase and inhibition by ethanol. Biochem Biophys Res Commun 249:191–196

    Article  CAS  PubMed  Google Scholar 

  • Kennerknecht I, Sorgo W, Oberhoffer R, Teller WM, Mattfeldt T, Negri G, Vogel W (1993) Familial occurrence of agonadism and multiple internal malformations in phenotypically normal girls with 46, XY and 46, XX karyotypes, respectively: a new autosomal recessive syndrome. Am J Med Genet 47:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ (2002a) Moderate alcohol intake during pregnancy and the risk of stillbirth and death in the first year of life. Am J Epidemiol 155:305–312

    Google Scholar 

  • Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ (2002b) Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol (Oxford, Oxfordshire) 37:87–92

    Google Scholar 

  • Kikonyogo A, Abriola DP, Dryjanski M, Pietruszko R (1999) Mechanism of inhibition of aldehyde dehydrogenase by citral, a retinoid antagonist. Eur J Biochem/FEBS 262:704–712

    Article  CAS  Google Scholar 

  • Koide T, Downes M, Chandraratna RA, Blumberg B, Umesono K (2001) Active repression of RAR signaling is required for head formation. Genes Dev 15:2111–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D et al (2012) Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 64:520–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koren G, Nulman I, Chudley AE, Loocke C (2003) Fetal alcohol spectrum disorder. Can Med Assoc J 169:1181–1185

    Google Scholar 

  • Kot-Leibovich H, Fainsod A (2009) Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis Model Mech 2:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft JC, Schuh T, Juchau M, Kimelman D (1994) The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development. Proc Natl Acad Sci USA 91:3067–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft JC, Kimelman D, Juchau MR (1995) Xenopus laevis: a model system for the study of embryonic retinoid metabolism. I. Embryonic metabolism of 9-cis- and all-trans-retinals and retinols to their corresponding acid forms. Drug Metab Dispos: Biol Fate Chem 23:72–82

    CAS  Google Scholar 

  • Krivospitskaya O, Elmabsout AA, Sundman E, Söderström LA, Ovchinnikova O, Gidlöf AC, Scherbak N et al (2012) A CYP26B1 polymorphism enhances retinoic acid catabolism and may aggravate atherosclerosis. Mol Med 18:712–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Sandell LL, Trainor PA, Koentgen F, Duester G (2012) Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochem Biophys Acta 1821:198–205

    CAS  PubMed  Google Scholar 

  • Kumar A, Singh HN, Pareek V, Raza K, Dantham S, Kumar P, Mochan S et al (2016) A possible mechanism of zika virus associated microcephaly: imperative role of retinoic acid response element (RARE) consensus sequence repeats in the viral genome. Front Hum Neurosci 10:403

    PubMed  PubMed Central  Google Scholar 

  • Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ et al (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841

    Article  CAS  PubMed  Google Scholar 

  • Lange S, Probst C, Gmel G, Rehm J, Burd L, Popova S (2017) Global Prevalence of Fetal Alcohol Spectrum Disorder Among Children and Youth: A Systematic Review and Meta-analysis. JAMA Pediatr 171:948–956

    Article  PubMed  PubMed Central  Google Scholar 

  • Lanska DJ (2010) Chapter 29: historical aspects of the major neurological vitamin deficiency disorders: overview and fat-soluble vitamin A. Handb Clin Neurol 95:435–444.

    Google Scholar 

  • Lemoine P (2012) The history of alcoholic fetopathies. J Popul Therapeutics Clin Pharmacol = Journal de la therapeutique des populations et de la pharamcologie clinique 19:e224-6

    Google Scholar 

  • Lemoine P, Harousseau H, Borteyru JP, Menuet JC (1968) Les enfants de parents alcooliques: Anomalies observees a propos de 127 cas. Ouest Méd 8:476–482

    Google Scholar 

  • Lemoine P, Harousseau H, Borteyru JP, Menuet JC (2003) Children of alcoholic parents–observed anomalies: discussion of 127 cases. Ther Drug Monit 25:132–136

    Article  CAS  PubMed  Google Scholar 

  • Leo MA, Kim CI, Lieber CS (1987) NAD+-dependent retinol dehydrogenase in liver microsomes. Arch Biochem Biophys 259:241–249

    Article  CAS  PubMed  Google Scholar 

  • Leo MA, Kim CI, Lowe N, Lieber CS (1989) Increased hepatic retinal dehydrogenase activity after phenobarbital and ethanol administration. Biochem Pharmacol 38:97–103

    Article  CAS  PubMed  Google Scholar 

  • Leung C, Rivera L, Furness JB, Angus PW (2016) The role of the gut microbiota in NAFLD. Nat Rev. Gastroenterol Hepatol 13:412–425

    Article  CAS  PubMed  Google Scholar 

  • Le H-GT, Dowling JE, Cameron DJ (2012) Early retinoic acid deprivation in developing zebrafish results in microphthalmia. Vis Neurosci 29:219–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieber CS (1999) Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)–a review. Alcohol Clin Exp Res 23:991–1007

    CAS  PubMed  Google Scholar 

  • Lieber CS (2004) The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 36:511–529

    Article  CAS  PubMed  Google Scholar 

  • Lipinski RJ, Hammond P, O’Leary-Moore SK, Ament JJ, Pecevich SJ, Jiang Y, Budin F et al (2012) Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent. PLoS ONE 7:e43067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Gao F, Liu X, Li J, Wang Y, Han J, Wang X (2016) Prenatal alcohol exposure and offspring liver dysfunction: a systematic review and meta-analysis. Arch Gynecol Obstet 294:225–231

    Article  CAS  PubMed  Google Scholar 

  • Lohnes D, Mark M, Mendelsohn C, Dollé P, Dierich A, Gorry P, Gansmuller A et al (1994) Function of the retinoic acid receptors (RARs) during development (I). Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748

    CAS  PubMed  Google Scholar 

  • Lunde ER, Washburn SE, Golding MC, Bake S, Miranda RC, Ramadoss J (2016) Alcohol-induced developmental origins of adult-onset diseases. Alcohol Clin Exp Res 40:1403–1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Lussier AA, Weinberg J, Kobor MS (2017) Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics 9:291–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macayran JF, Doroshow RW, Phillips J, Sinow RM, Furst BA, Smith LM, Lin HJ (2002) PAGOD syndrome: eighth case and comparison to animal models of congenital vitamin A deficiency. Am J Med Genet 108:229–234

    Article  PubMed  Google Scholar 

  • Maden M (2001) Vitamin A and the developing embryo. Postgrad Med J 77:489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765

    Article  CAS  PubMed  Google Scholar 

  • Mall FP (1908) A study of the causes underlying the origin of human monsters. (Third contribution to the study of the pathology of human embryos). J Morphol 19:1–367

    Article  Google Scholar 

  • Mandal C, Halder D, Jung KH, Chai YG (2018) Maternal alcohol consumption and altered miRNAs in the developing fetus: Context and future perspectives. J Appl Toxicol 38:100–107

    Article  CAS  PubMed  Google Scholar 

  • Marikar Y, Wang Z, Duell EA, Petkovich M, Voorhees JJ, Fisher GJ (1998) Retinoic acid receptors regulate expression of retinoic acid 4-hydroxylase that specifically inactivates all-trans retinoic acid in human keratinocyte HaCaT cells. J Invest Dermatol 111:434–439

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2009) Function of retinoic acid receptors during embryonic development. Nucl Recept Signal 7:e002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marrs JA, Clendenon SG, Ratcliffe DR, Fielding SM, Liu Q, Bosron WF (2010) Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol (Fayetteville, N.Y.) 44:707–715

    Google Scholar 

  • McCarver DG (2001) ADH2 and CYP2E1 genetic polymorphisms: risk factors for alcohol-related birth defects. Drug Metab Dispos: Biol Fate Chem 29:562–565

    CAS  Google Scholar 

  • McCarver DG, Thomasson HR, Martier SS, Sokol RJ, Li T (1997) Alcohol dehydrogenase-2*3 allele protects against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther 283:1095–1101

    CAS  PubMed  Google Scholar 

  • McSorley LC, Daly AK (2000) Identification of human cytochrome P450 isoforms that contribute to all-trans-retinoic acid 4-hydroxylation. Biochem Pharmacol 60:517–526

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn C, Lohnes D, Décimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development (Cambridge, England) 120:2749–2771

    CAS  Google Scholar 

  • Metzler MA, Sandell LL (2016) Enzymatic metabolism of vitamin A in developing vertebrate embryos. Nutrients 8:pii: E812

    Google Scholar 

  • Mezey E, Holt PR (1971) The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina. Exp Mol Pathol 15:148–156

    Article  CAS  PubMed  Google Scholar 

  • Micucci JA, Layman WS, Hurd EA, Sperry ED, Frank SF, Durham MA, Swiderski DL et al (2014) CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet 23:434–448

    Article  CAS  PubMed  Google Scholar 

  • Mic FA, Molotkov A, Molotkova N, Duester G (2004) Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Dev Dyn 231:270–277

    Article  CAS  PubMed  Google Scholar 

  • Mills JL, Graubard BI, Harley EE, Rhoads GG, Berendes HW (1984) Maternal alcohol consumption and birth weight. How much drinking during pregnancy is safe? JAMA J Am Med Assoc 252:1875–1879

    Article  CAS  Google Scholar 

  • Molotkova N, Molotkov A, Duester G (2007) Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev Biol 303:601–610

    Article  CAS  PubMed  Google Scholar 

  • Molotkov A, Duester G (2002) Retinol/ethanol drug interaction during acute alcohol intoxication in mice involves inhibition of retinol metabolism to retinoic acid by alcohol dehydrogenase. J Biol Chem 277:22553–22557

    Article  CAS  PubMed  Google Scholar 

  • Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, da Fonseca EB, Ribeiro EM et al (2017) Characterizing the pattern of anomalies in congenital zika syndrome for pediatric clinicians. JAMA Pediatr 171:288–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Morriss-Kay GM, Sokolova N (1996) Embryonic development and pattern formation. FASEB J: Off Publ Fed Am Soc Exp Biol 10:961–968

    Article  CAS  Google Scholar 

  • Muralidharan P, Sarmah S, Marrs JA (2015) Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol (Fayetteville, N.Y.) 49:149–163

    Google Scholar 

  • Napoli JL (1986) Retinol metabolism in LLC-PK1 Cells. Characterization of retinoic acid synthesis by an established mammalian cell line. J Biol Chem 261:13592–13597

    CAS  PubMed  Google Scholar 

  • Newman H, Fletcher E (1941) The effect of alcohol on vision. Am J Med Sci 202:723–731

    Article  CAS  Google Scholar 

  • Nicholls P (2012) Classical catalase: ancient and modern. Arch Biochem Biophys 525:95–101

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, Dollé P (2008) Retinoic acid in development: towards an integrated view. Nat Rev Genet 9:541–553

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, McCaffery P, Dräger UC, Chambon P, Dollé P (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev 62:67–78

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, Subbarayan V, Dollé P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, Abu-Abed S, Schuhbaur B, Petkovich M, Chambon P, Dollé P (2002) Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat Genet 31:84–88

    Article  CAS  PubMed  Google Scholar 

  • Nilsson O, Isoherranen N, Guo MH, Lui JC, Jee YH, Guttmann-Bauman I, Acerini C et al (2016) Accelerated skeletal maturation in disorders of retinoic acid metabolism: A case report and focused review of the literature. Horm Metab Res 48:737–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okubo T (2014) Tbx1/ripply3/retinoic acid signal network that regulates pharyngeal arch development. In: Kondoh H, Kuroiwa A (eds) New principles in developmental processes. Springer, Japan, pp 97–108

    Chapter  Google Scholar 

  • Okubo T, Kawamura A, Takahashi J, Yagi H, Morishima M, Matsuoka R, Takada S (2011) Ripply3, a Tbx1 repressor, is required for development of the pharyngeal apparatus and its derivatives in mice. Development 138:339–348

    Article  CAS  PubMed  Google Scholar 

  • O’Byrne SM, Blaner WS (2013) Retinol and retinyl esters: biochemistry and physiology. J Lipid Res 54:1731–1743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker HJ, Krumlauf R (2017) Segmental arithmetic: summing up theHox gene regulatory network for hindbrain development in chordates. Wiley Interdiscip Rev: Dev Biol 6:e286

    Article  Google Scholar 

  • Parnell SE, Riley EP, Warren KR, Mitchell KT, Charness ME (2018) The contributions of Dr. Kathleen K. Sulik to fetal alcohol spectrum disorders research and prevention. Alcohol (Fayetteville, N.Y.) 69:15–24

    Google Scholar 

  • Patek AJ, Haig C (1939) The occurrence of abnormal dark adaptation and its relation to vitamin a metabolism in patients with cirrhosis of the liver. J Clin Investig 18:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perz-Edwards A, Hardison NL, Linney E (2001) Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 229:89–101

    Article  CAS  PubMed  Google Scholar 

  • Petrelli B, Weinberg J, Hicks GG (2018) Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol (Biochim et Biol Cell) 96:131–147

    Article  CAS  Google Scholar 

  • Petrelli B, Bendelac L, Hicks GG, Fainsod A (2019) Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis e23278

    Google Scholar 

  • Plapp BV, Mitchell JL, Berst KB (2001) Mouse alcohol dehydrogenase 4: kinetic mechanism, substrate specificity and simulation of effects of ethanol on retinoid metabolism. Chem Biol Interact 130–132:445–456

    Article  PubMed  Google Scholar 

  • Pocker Y, Raymond KW (1980) Kinetic and mechanistic studies of oxidation of vitamin A alcohol to vitamin A aldehyde by horse liver alcohol dehydrogenase. The inhibition by ethanol and pyrazole. Adv Exp Med Biol 132:137–150

    CAS  PubMed  Google Scholar 

  • Popova S, Lange S, Shield K, Mihic A, Chudley AE, Mukherjee RAS, Bekmuradov D et al (2016) Comorbidity of fetal alcohol spectrum disorder: a systematic review and meta-analysis. The Lancet 387:978–987

    Article  Google Scholar 

  • Pullarkat RK (1991) Hypothesis: prenatal ethanol-induced birth defects and retinoic acid. Alcohol Clin Exp Res 15:565–567

    Article  CAS  PubMed  Google Scholar 

  • Randall CL (2001) Alcohol and pregnancy: highlights from three decades of research. J Stud Alcohol 62:554–561

    Article  CAS  PubMed  Google Scholar 

  • Raskin NH, Sligar KP, Steinberg RH (1976) A pathophysiologic role for alcohol dehydrogenase: is retinol its “natural” substrate? Ann N Y Acad Sci 273:317–327

    Article  CAS  PubMed  Google Scholar 

  • Reynier M (1969) Pyrazole inhibition and kinetic studies of ethanol and retinol oxidation catalyzed by rat liver alcohol dehydrogenase. Acta Chem Scand 23:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Dollé P (2012) Retinoic acid signalling during development. Development 139:843–858

    Article  CAS  PubMed  Google Scholar 

  • Rhinn M, Schuhbaur B, Niederreither K, Dollé P (2011) Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proc Natl Acad Sci USA 108:16687–16692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribes V, Wang Z, Dollé P, Niederreither K (2006) Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development 133:351–361

    Article  CAS  PubMed  Google Scholar 

  • Riikonen RS (1994) Difference in susceptibility to teratogenic effects of alcohol in discordant twins exposed to alcohol during the second half of gestation. Pediatr Neurol 11:332–336

    Article  CAS  PubMed  Google Scholar 

  • Riley EP, Infante MA, Warren KR (2011) Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev 21:73–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts C, Ivins SM, James CT, Scambler PJ (2005) Retinoic acid down-regulates Tbx1 expression in vivo and in vitro. Dev Dyn 232:928–938

    Article  CAS  PubMed  Google Scholar 

  • Roberts C, Ivins S, Cook AC, Baldini A, Scambler PJ (2006) Cyp26 genes a1, b1 and c1 are down-regulated in Tbx1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of digeorge syndrome in the chick. Hum Mol Genet 15:3394–3410

    Article  CAS  PubMed  Google Scholar 

  • Roozen S, Peters G-JY, Kok G, Townend D, Nijhuis J, Curfs L (2016) Worldwide prevalence of fetal alcohol spectrum disorders: a systematic literature review including meta-analysis. Alcohol Clin Exp Res 40:18–32

    Article  PubMed  Google Scholar 

  • Rossant J, Zirngibl R, Cado D, Shago M, Giguère V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Russo JE, Hauguitz D, Hilton J (1988) Inhibition of mouse cytosolic aldehyde dehydrogenase by 4-(diethylamino)benzaldehyde. Biochem Pharmacol 37:1639–1642

    Article  CAS  PubMed  Google Scholar 

  • Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, Rey J-P et al (2007) RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21:1113–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandell LL, Lynn ML, Inman KE, McDowell W, Trainor PA (2012) RDH10 oxidation of Vitamin A is a critical control step in synthesis of retinoic acid during mouse embryogenesis. PLoS ONE 7:e30698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanlaville D, Verloes A (2007) CHARGE syndrome: an update. Eur J Hum Genet 15:389–399

    Article  CAS  PubMed  Google Scholar 

  • Sarma V (1959) Maternal vitamin A deficiency and fetal microcephaly and anophthalmia; report of a case. Obstet Gynecol 13:299–301

    CAS  PubMed  Google Scholar 

  • Scambler PJ, Carey AH, Wyse RK, Roach S, Dumanski JP, Nordenskjold M, Williamson R (1991) Microdeletions within 22q11 associated with sporadic and familial DiGeorge syndrome. Genomics 10:201–206

    Article  CAS  PubMed  Google Scholar 

  • Schuckit MA (1998) Alcohol and alcoholism. In: Harrison TR, Fauci AS (eds) Harrisons principles of internal medicine, 14th edn, pp 2503–2507. McGraw-Hill, Health Professions Division, New York.

    Google Scholar 

  • Schuh TJ, Hall BL, Kraft JC, Privalsky ML, Kimelman D (1993) v-erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis. Development (Cambridge, England) 119:785–798

    CAS  Google Scholar 

  • Schuster GU, Kenyon NJ, Stephensen CB (2008) Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma. J Immunol 180:1834–1842

    Article  CAS  PubMed  Google Scholar 

  • See AW-M, Kaiser ME, White JC, Clagett-Dame M (2008) A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Dev Biol 316:171–190

    Article  CAS  PubMed  Google Scholar 

  • Shabtai Y, Fainsod A (2018) Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome. Biochem Cell Biol (Biochim et Biol Cell) 96:148–160

    Article  CAS  Google Scholar 

  • Shabtai Y, Jubran H, Nassar T, Hirschberg J, Fainsod A (2016) Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochem J 473:1423–1431

    Article  CAS  PubMed  Google Scholar 

  • Shabtai Y, Bendelac L, Jubran H, Hirschberg J, Fainsod A (2018) Acetaldehyde inhibits retinoic acid biosynthesis to mediate alcohol teratogenicity. Sci Rep 8:347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharpe C, Goldstone K (2000) The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm. Mech Dev 91:69–80

    Article  CAS  PubMed  Google Scholar 

  • Shenoda BB (2017) An Overview of the Mechanisms of Abnormal GABAergic Interneuronal Cortical Migration Associated with Prenatal Ethanol Exposure. Neurochem Res 42:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Shukrun N, Shabtai Y, Pillemer G, Fainsod A (2019) Retinoic acid signaling reduction recapitulates the effects of alcohol on embryo size. Genesis 57:e23284

    Article  PubMed  CAS  Google Scholar 

  • Sive HL, Hattori K, Weintraub H (1989) Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58:171–180

    Article  CAS  PubMed  Google Scholar 

  • Smith DF, Sandor GG, MacLeod PM, Tredwell S, Wood B, Newman DE (1981) Intrinsic defects in the fetal alcohol syndrome: studies on 76 cases from British Columbia and the Yukon Territory. Neurobehav Toxicol Teratol 3:145–152

    CAS  PubMed  Google Scholar 

  • Sokol RJ, Delaney-Black V, Nordstrom B (2003) Fetal alcohol spectrum disorder. J Am Med Assoc 290:2996–2999

    Article  CAS  Google Scholar 

  • Sonneveld E, van den Brink CE, van der Leede BM, Schulkes RK, Petkovich M, van der Burg B, van der Saag PT (1998) Human retinoic acid (RA) 4-hydroxylase (CYP26) is highly specific for all-trans-RA and can be induced through RA receptors in human breast and colon carcinoma cells. Cell Growth Differ 9:629–637

    CAS  PubMed  Google Scholar 

  • Sosnik J, Zheng L, Rackauckas CV, Digman M, Gratton E, Nie Q, Schilling TF (2016) Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain eLife 5:e14034

    Google Scholar 

  • Sreenathan RN, Singh S, Padmanabhan R (1984) Effect of acetaldehyde on skeletogenesis in rats. Drug Alcohol Depend 14:165–174

    Article  CAS  PubMed  Google Scholar 

  • Stockard CR (1910) The influence of alcohol and other anaesthetics on embryonic development. Am J Anat 10:369–392

    Article  Google Scholar 

  • Stoler JM, Ryan LM, Holmes LB (2002) Alcohol dehydrogenase 2 genotypes, maternal alcohol use, and infant outcome. J Pediatr 141:780–785

    Article  PubMed  Google Scholar 

  • Strate I, Min TH, Iliev D, Pera EM (2009) Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. Development 136:461–472

    Article  CAS  PubMed  Google Scholar 

  • Streissguth AP, Dehaene P (1993) Fetal alcohol syndrome in twins of alcoholic mothers: concordance of diagnosis and IQ. Am J Med Genet 47:857–861

    Article  CAS  PubMed  Google Scholar 

  • Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999) Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 216:282–296

    Article  CAS  PubMed  Google Scholar 

  • Tai M, Piskorski A, Kao JCW, Hess LA, de la Monte SM, Gündoğan F (2017) Placental morphology in fetal alcohol spectrum disorders. Alcohol Alcohol 52:138–144

    CAS  PubMed  Google Scholar 

  • Tan CH, Denny CH, Cheal NE, Sniezek JE, Kanny D (2015) Alcohol Use and Binge Drinking Among Women of Childbearing Age — United States, 2011–2013. Morb Mortal Wkly Rep 64:1042–1046

    Article  Google Scholar 

  • Tsukahara M, Kajii T (1988) Severe skeletal dysplasias following intrauterine exposure to ethanol. Teratology 37:79–80

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto S, Muto T, Nagoya T, Shimamura M, Saito M, Tainaka H (1989) Determinations of ethanol, acetaldehyde and acetate in blood and urine during alcohol oxidation in man. Alcohol Alcohol (Oxford, Oxfordshire) 24:101–108

    Article  CAS  Google Scholar 

  • Tuma DJ, Hoffman T, Sorrell MF (1991) The chemistry of acetaldehyde-protein adducts. Alcohol Alcohol (Oxford, Oxfordshire) Suppl 1:271–276

    Google Scholar 

  • Twal WO, Zile MH (1997) Retinoic acid reverses ethanol-induced cardiovascular abnormalities in quail embryos. Alcohol Clin Exp Res 21:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Underwood BA (1994) Maternal vitamin A status and its importance in infancy and early childhood. Am J Clin Nutr 59:517S-522S. Discussion 522S

    Google Scholar 

  • Van Thiel DH, Gavaler J, Lester R (1974) Ethanol inhibition of vitamin A metabolism in the testes: possible mechanism for sterility in alcoholics. Science (New York, NY) 186:941–942

    Article  Google Scholar 

  • Vermot J, Niederreither K, Garnier J-M, Chambon P, Dollé P (2003) Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proc Natl Acad Sci USA 100:1763–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viljoen DL, Carr LG, Foroud TM, Brooke L, Ramsay M, Li TK (2001) Alcohol dehydrogenase-2*2 allele is associated with decreased prevalence of fetal alcohol syndrome in the mixed-ancestry population of the Western Cape Province, South Africa. Alcohol Clin Exp Res 25:1719–1722

    Article  CAS  PubMed  Google Scholar 

  • Vissers LELM, van Ravenswaaij CMA, Admiraal R, Hurst JA, de Vries BBA, Janssen IM, van der Vliet WA et al (2004) Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 36:955–957

    Article  CAS  PubMed  Google Scholar 

  • Warkany J, Schrafenberger E (1946) Congenital malformations induced in rats by maternal vitamin A deficiency; defects of the eye. Arch Ophthalmol (Chicago, Ill. : 1929) 35:150–169

    Google Scholar 

  • Warner RH, Rosett HL (1975) The effects of drinking on offspring: an historical survey of the American and British literature. J Stud Alcohol 36:1395–1420

    Article  CAS  PubMed  Google Scholar 

  • Warren KR (2015) A review of the history of attitudes toward drinking in pregnancy. Alcohol Clin Exp Res 39:1110–1117

    Article  PubMed  Google Scholar 

  • Warren KR, Hewitt BG (2009) Fetal alcohol spectrum disorders: when science, medicine, public policy, and laws collide. Dev Disabil Res Rev 15:170–175

    Article  PubMed  Google Scholar 

  • Wells PG, Bhatia S, Drake DM, Miller-Pinsler L (2016) Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Res Part C Embryo Today: Rev 108:108–130

    Article  CAS  Google Scholar 

  • Weston AD, Blumberg B, Underhill TM (2003) Active repression by unliganded retinoid receptors in development: less is sometimes more. J Cell Biol 161:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JA, Beckett-Jones B, Guo Y-D, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) Identifies a novel family of cytochromes P450 (CYP26). J Biol Chem 272:18538–18541

    Article  CAS  PubMed  Google Scholar 

  • White JC, Shankar VN, Highland M, Epstein ML, Deluca HF, Clagett-Dame M (1998) Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Biochemistry 95:13459–13464

    CAS  Google Scholar 

  • Whiting J (1997) Craniofacial abnormalities induced by the ectopic expression of homeobox genes. Mutat Res 396:97–112

    Article  CAS  PubMed  Google Scholar 

  • Williams JF, Smith VC, COMMITTEE ON SUBSTANCE ABUSE. (2015) Fetal alcohol spectrum disorders. Pediatrics 136:e1395–e1406

    Article  PubMed  Google Scholar 

  • Wilson JG, Warkany J (1948) Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am J Anat 83:357–407

    Article  CAS  PubMed  Google Scholar 

  • Wilson JG, Warkany J (1949) Aortic-arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am J Anat 85:113–155

    Article  CAS  PubMed  Google Scholar 

  • Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat 92:189–217

    Article  CAS  PubMed  Google Scholar 

  • Wiseman EM, Bar-El Dadon S, Reifen R (2017) The vicious cycle of vitamin a deficiency: a review. Crit Rev Food Sci Nutr 57:3703–3714

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Yue J, Yang Z (2015) Expression profiles of retinoic acid synthetases ALDH1As and metabolic enzymes CYP26s in adult and embryonic zebrafish (Danio rerio). Genet Mol Res 14:3948–3956

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Hill SF, Skidmore JM, Sperry ED, Swiderski DL, Sanchez GJ,. Bartels CF et al (2018) CHD7 represses the retinoic acid synthesis enzyme ALDH1A3 during inner ear development 3:e97440

    Google Scholar 

  • Yelin R, Schyr RB-H, Kot H, Zins S, Frumkin A, Pillemer G, Fainsod A (2005) Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol 279:193–204

    Article  CAS  PubMed  Google Scholar 

  • Yelin R, Kot H, Yelin D, Fainsod A (2007) Early molecular effects of ethanol during vertebrate embryogenesis. Differ; Res Biol Divers 75:393–403

    Google Scholar 

  • Zhong Z, Lemasters JJ (2018) A unifying hypothesis linking hepatic adaptations for ethanol metabolism to the proinflammatory and profibrotic events of alcoholic liver disease. Alcohol Clin Exp Res 42:2072–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Fainsod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fainsod, A., Bendelac-Kapon, L., Shabtai, Y. (2020). Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling III. Subcellular Biochemistry, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-42282-0_8

Download citation

Publish with us

Policies and ethics