Skip to main content

Eye for an Eye: A Comparative Account on Compound Eye of Drosophila melanogaster with Vertebrate Eye

  • Chapter
  • First Online:
Molecular Genetics of Axial Patterning, Growth and Disease in Drosophila Eye

Abstract

A majesty of evolution encompasses in diversity of the types of eyes known today. Out of all organisms, only a bit over 30 different phyla possess sophisticated eyes. Stating that, rest of the animals are not blind. There could be camera type, or compound eyes, or mirror-like eyes, all different from one another in several aspects, still performing more or less the same function. Even though there are several differences, there are striking similarities as well in all diverse animal life forms. After Ramon y Cajal observed striking similarities between vertebrate and insect retinas, over a century ago, newer research keeps adding to the account with the help of cutting edge technology. Today, we know for the fact that there are more similarities than one can think into visual systems of insects and vertebrates. Of all invertebrate model systems, Drosophila melanogaster stands apart; for, it shares a high degree of genetic conservation and less redundancy. Shorter life span, ease of culture, and availability of wide variety of genetic tools are other benefits which make Drosophila melanogaster a great model system. In this chapter, we shall be providing a comparative account on the compound eye of Drosophila melanogaster with that of camera type eye of vertebrates, in terms of development, structure, and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agi E, Langen M, Altschuler SJ, Wu LF, Zimmermann T, Hiesinger PR (2014) The evolution and development of neural superposition. Journal of Neurogen 28(3–4). https://doi.org/10.3109/01677063.2014.922557

  • Azuma N, Hirakiyama A, Inoue T, Asaka A, Yamada M (2000) Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet 9(3):363–366

    Article  CAS  PubMed  Google Scholar 

  • Baccus SA, Ölveczky BP, Manu M, Meister M (2008) A retinal circuit that computes object motion. J Neurosci 28(27):6807–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T (2016) The functional diversity of retinal ganglion cells in the mouse. Nature 529(7586):345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BS, Carpenter AT, Ripoll P (1978) The utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster. Genetics 90(3):531–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72(3):379–395

    Article  CAS  PubMed  Google Scholar 

  • Borsani G, DeGrandi A, Ballabio A, Bulfone A, Bernard L, Banfi S, Gattuso C, Mariani M, Dixon M, Donnai D, Metcalfe K (1999) EYA4, a novel vertebrate gene related to Drosophila eyes absent. Hum Mol Genet 8(1):11–23

    Article  CAS  PubMed  Google Scholar 

  • Borst A (2009) Drosophila’s view on insect vision. Curr Biol 19(1):R36–R47

    Article  CAS  PubMed  Google Scholar 

  • Cajal S, Sanchez D (1915) Contribucion al conocimiento de los centros nerviosos del los insectos. Trab lab invest biol, 1983 74(1–4):1–164

    Google Scholar 

  • Caubit X, Thangarajah R, Theil T, Wirth J, Nothwang HG, Rüther U, Krauss S (1999) Mouse Dac, a novel nuclear factor with homology to Drosophila dachshund shows a dynamic expression in the neural crest, the eye, the neocortex, and the limb bud. Dev Dyn 214(1):66–80

    Article  CAS  PubMed  Google Scholar 

  • Chaffiol A, Ishii M, Cao Y, Mangel SC (2017) Dopamine regulation of GABAA receptors contributes to light/dark modulation of the ON-cone bipolar cell receptive field surround in the retina. Curr Biol 27(17):2600–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V (2001) Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128(23):4691–4704

    CAS  PubMed  Google Scholar 

  • Chen Y, Riese MJ, Killinger MA, Hoffmann FM (1998) A genetic screen for modifiers of Drosophila decapentaplegic signaling identifies mutations in punt, Mothers against dpp and the BMP-7 homologue, 60A. Development 125(9):1759–1768

    CAS  PubMed  Google Scholar 

  • Chen R, Halder G, Zhang Z, Mardon G (1999) Signaling by the TGF-beta homolog decapentaplegic functions reiteratively within the network of genes controlling retinal cell fate determination in Drosophila. Development 126(5):935–943

    CAS  PubMed  Google Scholar 

  • Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12(5):977–996

    Article  CAS  PubMed  Google Scholar 

  • Collinson JM, Hill RE, West JD (2000) Different roles for Pax6 in the optic vesicle and facial epithelium mediate early morphogenesis of the murine eye. Development 127(5):945–956

    CAS  PubMed  Google Scholar 

  • Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3(3):297–307

    Article  CAS  PubMed  Google Scholar 

  • Gallardo ME, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, Ayuso C, Seller MJ, Brunner HG, Bovolenta P, de Córdoba SR (1999) Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics 61(1):82–91

    Article  CAS  PubMed  Google Scholar 

  • Gehring W (1967) Clonal analysis of determination dynamics in cultures of imaginal disks in Drosophila melanogaster. Dev Biol 16(5):438–456

    Article  CAS  PubMed  Google Scholar 

  • Glaser T, Walton DS, Maas RL (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat Genet 2(3):232

    Article  CAS  PubMed  Google Scholar 

  • Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2):150–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grainger RM (1992) Embryonic lens induction: shedding light on vertebrate tissue determination. Trends Genet 8(10):349–355

    Article  CAS  PubMed  Google Scholar 

  • Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273(3):583–598

    Article  CAS  PubMed  Google Scholar 

  • Greenwood S, Struhl G (1999) Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway. Development 126(24):5795–5808

    CAS  PubMed  Google Scholar 

  • Grindley JC, Davidson DR, Hill RE (1995) The role of Pax-6 in eye and nasal development. Development 121(5):1433–1442

    CAS  PubMed  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) New perspectives on eye evolution. Curr Opin Genet Dev 5(5):602–609

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Callaerts P, Flister S, Walldorf U, Kloter U, Gehring WJ (1998) Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development 125(12):2181–2191

    CAS  PubMed  Google Scholar 

  • Hammond KL, Hanson IM, Brown AG, Lettice LA, Hill RE (1998) Mammalian and Drosophila dachshund genes are related to the Ski proto-oncogene and are expressed in eye and limb. Mech Dev 74(1):121–131

    Article  CAS  PubMed  Google Scholar 

  • Haynie JL, Bryant PJ (1986) Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool 237(3):293–308

    Article  CAS  PubMed  Google Scholar 

  • Heanue TA, Reshef R, Davis RJ, Mardon G, Oliver G, Tomarev S, Lassar AB, Tabin CJ (1999) Synergistic regulation of vertebrate muscle development by Dach2, Eya2, and Six1, homologs of genes required for Drosophila eye formation. Genes Dev 13(24):3231–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberlein U, Wolff T, Rubin GM (1993) The TGFβ homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75(5):913–926

    Article  CAS  PubMed  Google Scholar 

  • Huang YS, Ku HY, Tsai YC, Chang CH, Pao SH, Sun YH, Chiou A (2017) 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila. Sci Rep 7:44945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarman AP (2000) Developmental genetics: vertebrates and insects see eye to eye. Curr Biol 10(23):R857–R859

    Article  CAS  PubMed  Google Scholar 

  • Jürgens G, Lehmann R, Schardin M, Nüsslein-Volhard C (1986) Segmental organisation of the head in the embryo of Drosophila melanogaster. Rouxs Arch Dev Biol 195(6):359–377

    Article  PubMed  Google Scholar 

  • Kozmik Z, Pfeffer P, Kralova J, Paces J, Paces V, Kalousova A, Cvekl A (1999) Molecular cloning and expression of the human and mouse homologues of the Drosophila dachshund gene. Dev Genes Evol 209(9):537–545

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Ertekin D, Lee CH, Hummel T (2016) Birth order dependent growth cone segregation determines synaptic layer identity in the Drosophila visual system. elife 5:e13715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar JP (2018) The fly eye: through the looking glass. Dev Dyn 247(1):111–123

    Article  CAS  PubMed  Google Scholar 

  • Mardon G, Solomon NM, Rubin GM (1994) Dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development 120(12): 3473–3486.

    Google Scholar 

  • Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4(9):877

    Article  CAS  PubMed  Google Scholar 

  • Masland RH (2012) The neuronal organization of the retina. Neuron 76(2):266–280. https://doi.org/10.1016/j.neuron.2012.10.002

  • Meinertzhagen IA, O’neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305(2):232–263

    Article  CAS  PubMed  Google Scholar 

  • Morante J, Desplan C (2008) The color-vision circuit in the medulla of Drosophila. Curr Biol 18(8):553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Münch TA, Da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B (2009) Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat Neurosci 12(10):1308

    Article  PubMed  CAS  Google Scholar 

  • Namba R, Minden JS (1999) Fate mapping of Drosophila embryonic mitotic domain 20 reveals that the larval visual system is derived from a subdomain of a few cells. Dev Biol 212(2):465–476

    Article  CAS  PubMed  Google Scholar 

  • Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19(10):6815–6824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto H, Takizawa T, Saito T, Kobayashi M, Ikeda K, Kawakami K (2002) Tissue and developmental distribution of Six family gene products. Int J Dev Biol 42(2):141–148

    Google Scholar 

  • Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497(6):928–958

    Article  PubMed  Google Scholar 

  • Ouweneel WJ (1970) Normal and abnormal determination in the imaginal discs of Drosophila, with special reference to the eye discs. Acta Embryol Exp 1:95

    CAS  Google Scholar 

  • Pak WL (2010) Why Drosophila to study phototransduction? J Neurogenet 24:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker AR (2009) On The Origin of Optics. Opt Laser Technol 43(2):323–329. https://doi.org/10.1016/J.Optlastec.2008.12.020

    Article  Google Scholar 

  • Pei YF, Rhodin JA (1970) The prenatal development of the mouse eye. Anat Rec 168(1):105–125

    Article  CAS  PubMed  Google Scholar 

  • Piatigorsky J, Wistow GJ (1989) Enzyme/crystallins: gene sharing as an evolutionary strategy. Cell 57(2):197–199

    Article  CAS  PubMed  Google Scholar 

  • Prosser J, van Heyningen V (1998) PAX6 mutations reviewed. Hum Mutat 11(2):93–108

    Article  CAS  PubMed  Google Scholar 

  • Quinn JC, West JD, Hill RE (1996) Multiple functions for Pax6 in mouse eye and nasal development. Genes Dev 10(4):435–446

    Article  CAS  PubMed  Google Scholar 

  • Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265(5173):785–789

    Article  CAS  PubMed  Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53(2):217–240

    Article  CAS  PubMed  Google Scholar 

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14(3):357

    Article  CAS  PubMed  Google Scholar 

  • Salcedo E, Huber A, Henrich S, Chadwell LV, Chou WH, Paulsen R, Britt SG (1999) Blue-and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci 19(24):10716–10726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66(1):15–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467(2):150–172

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Choi KW (2003) Initial state of the Drosophila eye before dorsoventral specification is equivalent to ventral. Development 130(25):6351–6360

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Shi X, Choi KW (2006) Lobe and Serrate are required for cell survival during early eye development in Drosophila. Development 133(23):4771–4781

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Tare M, Puli OR, Kango-Singh M (2012) A glimpse into dorso-ventral patterning of the Drosophila eye. Dev Dyn 241(1):69–84

    Article  PubMed  Google Scholar 

  • Singh A, Gogia N, Chang, CY, Sun, YH (2019) Proximal fate marker homothorax marks the lateral extension of stalk-eyed fly Cyrtodopsis whitei. Genesis 57:e23309. https://doi.org/10.1002/dvg.23309

  • Stavenga DG, Foletti S, Palasantzas G, Arikawa K (2005) Light on the moth-eye corneal nipple array of butterflies. Proc R Soc B Biol Sci 273(1587):661–667

    Article  Google Scholar 

  • Takemura SY, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509(5):493–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Ton CC, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, van Heyningen V, Hastie ND, Meijers-Heijboer H, Drechsler M, Royer-Pokora B (1991) Positional cloning and characterization of a paired box-and homeobox-containing gene from the aniridia region. Cell 67(6):1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Toy J, Yang JM, Leppert GS, Sundin OH (1998) The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc Natl Acad Sci 95(18):10643–10648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto Y, Omi N (2013) Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to aII amacrine cells in the mouse retina. J Comp Neurol 521(15):3541–3555

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt DW, Anderson DF (1964) Studies on bovine ocular squamous carcinoma (“cancer eye”) XV. Heritability of susceptibility. J Hered 55(3):133–135

    Article  CAS  PubMed  Google Scholar 

  • Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai EH, Rommens J, Muenke M (1999) Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22(2):196

    Article  CAS  PubMed  Google Scholar 

  • Walther CL, Gruss PE (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113(4):1435–1449

    CAS  PubMed  Google Scholar 

  • Wawersik S, Purcell P, Rauchman M, Dudley AT, Robertson EJ, Maas R (1999) BMP7 acts in murine lens placode development. Dev Biol 207(1):176–188

    Article  CAS  PubMed  Google Scholar 

  • Weismann A (1864) Die nachembryonale Entwicklung der Musciden nach Beobachtungen an Musca vomitoria und Sarcophaga carnaria Zeit. Wiss Zool 14:187–336

    Google Scholar 

  • Wolff TA, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113(3):841–850

    CAS  PubMed  Google Scholar 

  • Xu PX, Woo I, Her H, Beier DR, Maas RL (1997) Mouse Eya homologues of the Drosophila eyes absent gene require Pax6 for expression in lens and nasal placode. Development 124(1):219–231

    CAS  PubMed  Google Scholar 

  • Yao X, Cafaro J, McLaughlin AJ, Postma FR, Paul DL, Awatramani G, Field GD (2018) Gap Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion Cells. Neuron 100(1):216–228

    Google Scholar 

  • Younossi-Hartenstein A, Tepass U, Hartenstein V (1993) Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Rouxs Arch Dev Biol 203(1–2):60–73

    Article  PubMed  Google Scholar 

  • Zimmerman JE, Bui QT, Steingrímsson E, Nagle DL, Fu W, Genin A, Spinner NB, Copeland NG, Jenkins NA, Bucan M, Bonini NM (1997) Cloning and characterization of two vertebrate homologs of the Drosophila eyes absent gene. Genome Res 7(2):128–141

    Article  CAS  PubMed  Google Scholar 

  • Zuber ME, Perron M, Philpott A, Bang A, Harris WA (1999) Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98(3):341–352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors would like to thank Ms. Tripti Misra for arranging and commenting on the manuscript, in addition to Mr. Bhavsar to help with figure drawings. We apologize to the authors and publications that we could not include in our references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghana Tare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rai, A., Narwal, S., Kanodia, H., Tare, M. (2020). Eye for an Eye: A Comparative Account on Compound Eye of Drosophila melanogaster with Vertebrate Eye. In: Singh, A., Kango-Singh, M. (eds) Molecular Genetics of Axial Patterning, Growth and Disease in Drosophila Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-42246-2_12

Download citation

Publish with us

Policies and ethics