Skip to main content

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 716 Accesses

Abstract

Polarization modulation infrared reflection-absorption spectroscopy (PM IRRAS) is an advanced structure analyzing technique. The propagation of the electromagnetic radiation in a medium and its reflection and refraction describe the reflectivity of the incoming beam from a phase boundary and transmissivity into a second medium, respectively. When the incoming IR radiation encounters a metal surface, the IR beam is almost fully reflected from its surface. The reflectivity of the IR light depends in the state of polarization of the incoming radiation. This property gives the theoretical background of IRRAS. When the incoming IR radiation is double modulated: at the Fourier transform IR spectrometer and at a photoelastic modulator, the measured signal provides a differential spectrum which is proportional to the absorbance of the species absorbing the IR light on the mirror surface. In this chapter the theory of the propagation of electromagnetic radiation in a condensed medium and theoretical backgrounds of IRRAS, PM IRRAS and in situ electrochemical PM IRRAS are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310–314

    Article  CAS  Google Scholar 

  2. Hipps KW, Crosby GA (1979) Applications of the photoelastic modulator to polarization spectroscopy. J Phys Chem 83:555–562

    Article  CAS  Google Scholar 

  3. Zamlynny V, Lipkowski J (2006) Quantitative SNIFTIRS and PM IRRAS of organic molecules at electrode surfaces. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Advances in electrochemical science and engineering, Diffraction and spectroscopic methods in electrochemistry, vol 9. Wiley-VCH, Weinheim, pp 315–376

    Chapter  Google Scholar 

  4. Brand I (2016) Application of polarization modulation infrared reflection absorption spectroscopy under electrochemical control for structural studies of biomimetic assemblies. Z Phys Chem 230:133–183

    Article  CAS  Google Scholar 

  5. Lippert RJ, Lamp BD, Porter MD (1998) Specular reflection spectroscopy. In: Mirabella FM (ed) Modern techniques in applied molecular spectroscopy. Wiley, New York, pp 83–126

    Google Scholar 

  6. Buffeteau T, Desbat B, Turlet JM (1988) FTIR spectroscopy of monolayers and ultrathin films using polarization modulation. Microchim Acta 2:23–26

    Article  Google Scholar 

  7. Buffeteau T, Desbat B, Turlet JM (1991) Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl Spectrosc 45:380–388

    Article  CAS  Google Scholar 

  8. Cornut I, Desbat B, Turlet JM, Dufourcq J (1996) In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface. Biophys J 70:305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skoda MWA, Jacobs RMJ, Zorn S, Schreiber F (2009) Optimizing the PMIRRAS signal from a multilayer system and application to self-assembled monolayers in contact with liquids. J Electron Spectrosc Relat Phenom 172:21–26

    Article  CAS  Google Scholar 

  10. Golden WG, Dunn DS, Overend J (1981) A method for measuring infrared reflection-absorption spectra of molecules adsorbed on low-area surfaces at monolayer and submonolayer concentrations. J Catal 71:395–405

    Article  CAS  Google Scholar 

  11. Golden WG, Kunimatsu K, Seki H (1984) Application of polarization-modulated Fourier transform infrared reflection-absorption spectroscopy to the study of carbon monooxide adsortpion and oxidation on a smooth platinum electrode. J Phys Chem 88:1275–1277

    Article  CAS  Google Scholar 

  12. Giner I, Maxisch M, Kunze C, Grundmeier G (2013) Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates. Appl Surf Sci 283:145–153

    Article  CAS  Google Scholar 

  13. Bewick A, Kunimatsu K (1980) Infrared spectroscopy of the electrode-electrolyte interface. Surf Sci 101:131–138

    Article  CAS  Google Scholar 

  14. Faguy PW, Fawcett WR (1990) Infrared reflection–absorption spectroscopy of the electrode / electrolyte interface: optical considerations. Appl Spectrosc 44:1309–1316

    Article  CAS  Google Scholar 

  15. Hansen WN (1968) Electric field produced by the propagation of plane coherent electromagnetic radiation in a stratified medium. J Opt Soc Am 58:380–390

    Article  Google Scholar 

  16. Moskovits M (1982) Surface selection rules. J Chem Phys 77:4408–4416

    Article  CAS  Google Scholar 

  17. Zawisza I, Wittstock G, Boukherroub R, Szunerits S (2007) PM IRRAS investigation of thin silica films deposited on gold. Part 1. Theory and proof of concept. Langmuir 23:9303–9309

    Article  CAS  PubMed  Google Scholar 

  18. Zamlynny V (2002) Electrochemical and spectroscopic studies of pyridine surfactants at the gold electrolyte interface Ph.D. Thesis, University of Guelph, Guelph

    Google Scholar 

  19. Palik E (1998) Handbook of optical constants of solids II. Academic, San Diego

    Google Scholar 

  20. Bewick A, Kunimatsu K, Pons S (1980) Infrared spectroscopy of the electrode-electrolyte interface. Electrochim Acta 25:465–468

    Article  CAS  Google Scholar 

  21. Roe DK, Sass JK, Bethune DS, Luntz AC (1987) Prospects for transient IR reflection-absorption spectroscopy of adsorbed species on electrode surfaces. Cell design for a laser source J Electroanal Chem 216:293–301

    CAS  Google Scholar 

  22. Seki H, Kunimatsu K, Golden WG (1985) A thin layer electrochemical cell for infrared spectroscopic measurements of the electrode/electrolyte interface. Appl Spectrosc 39:437–443

    Article  CAS  Google Scholar 

  23. Zhang J, Lu J, Cha C, Feng Z (1989) Electrochemical cell design for in-situ IR study of reactions involving high electric current and gas evolution. J Electroanal Chem 265:329–334

    Article  CAS  Google Scholar 

  24. Meier DM, Urakawa A, Mäder R, Baiker A (2009) Design and performance of a flow-through polarization modulation infrared reflection-absorption spectroscopy cell for time-resolved simultaneous surface and liquid phase detection under concentration and temperature perturbations. Rev Sci Instrum 80:094101

    Article  CAS  PubMed  Google Scholar 

  25. Brand I, Nullmeier M, Kluener T, Jogireddy R, Christoffers J, Wittstock G (2010) Structural analysis of HS(CD2)12(O-CH2-CH2)6OCH3 monolayers on gold by means of polarization modulation infrared reflection absorption spectroscopy. Progress of the reaction with bromine. Langmuir 26:362–370

    Article  CAS  PubMed  Google Scholar 

  26. Zamlynny V, Zawisza I, Lipkowski J (2003) PM FTIRRAS studies of potential-controlled transformations of a monolayer and a bilayer of 4-pentadecylpyridine a model surfactant adsorbed on a Au(111) electrode surface. Langmuir 19:132–145

    Article  CAS  Google Scholar 

  27. Faguy PW, Marinkovic NS (1995) Sensitivity and reproducibility in infrared spectroscopic measurements at single-crystal electrode surfaces. Anal Chem 67:2791–2799

    Article  CAS  Google Scholar 

  28. Bewick A, Pons S (1985) Advances in infrared and Raman spectroscopy, vol 12. Wiley, New York

    Google Scholar 

  29. Li N, Zamlynny V, Lipkowski J, Henglein F, Pettinger B (2002) In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au(111) electrode surface. J Electroanal Chem 524-525:43–53

    Article  CAS  Google Scholar 

  30. Vieira L, Schennach R, Gollas B (2015) In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Phys Chem Chem Phys 17:12870–12880

    Article  CAS  PubMed  Google Scholar 

  31. Bethune DS, Luntz AC, Sass JK, Roe DK (1988) Optical analysis of thin-layer electrochemical cells for infrared spectroscopy of adsorbates. Surf Sci 197:44–66

    Article  CAS  Google Scholar 

  32. Bin X, Horswell SL, Lipkowski J (2005) Electrochemical and PM-IRRAS studies of the effect of cholesterol on the structure of a DMPC bilayer supported at an Au (111) electrode surface, Part 1: Properties of the acyl chains. Biophys J 89:592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brosseau CL, Leitch J, Bin X, Chen M, Roscoe SG, Lipkowski J (2008) Electrochemical and PM-IRRAS a glycolipid-containing biomimetic membrane prepared using Langmuir-Blodgett/Langmuir-Schaefer deposition. Langmuir 24:13058–13067

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Araez N, Brosseau CL, Rodriguez P, Lipkowski J (2006) Layer-by-layer PM IRRAS characterization of DMPC bilayers deposited on a Au(111) electrode surface. Langmuir 22:10365–10371

    Article  CAS  PubMed  Google Scholar 

  35. Zawisza I, Lachenwitzer A, Zamlynny V, Horswell SL, Goddard JD, Lipkowski J (2003) Electrochemical and photon polarization modulation infrared reflection absorption spectroscopy study of the electric field driven transformations of a phospholipid bilayer supported at a gold electrode surface. Biophys J 86:4055–4075

    Article  Google Scholar 

  36. Hillman AR, Ryder KS, Madrid E, Burley AW, Wiltshire RJ, Merotra J, Grau M, Horswell SL, Glidle A, Dalgliesh RM, Hughs A, Cubitt R, Wildes A (2010) Structure and dynamics of phospholipid bilayer films under electrochemical control. Faraday Discuss 145:357–379

    Article  CAS  Google Scholar 

  37. Ahlers M, Stein N, Broch L, Brand I (2013) Study of the potential driven changes in a collagen film self-assembled on a polycrystalline gold electrode surface. J Electroanal Chem 706:140–148

    Article  CAS  Google Scholar 

  38. Dongmo S, Wittstock G, Christoffers J, Brand I (2017) In situ determination of potential-driven structural changes in a redox-active plumbagin polymer film on a glassy carbon electrode using PM IRRAS under electrochemical control. Electrochim Acta 255:298–308

    Article  CAS  Google Scholar 

  39. Kekedy-Nagy L, Ferapontova EE, Brand I (2017) Submolecular structure and orientation of oligonucleotide duplexes tethered to gold electrodes probed by infrared reflection absorption spectroscopy: effect of the electrode potentials. J Phys Chem C 121:1552–1565

    Article  CAS  Google Scholar 

  40. Kunimatsu K, Seki H, Golden WG (1984) Polarization-modulated FTIR spectra of cyanide adsorbed on a silver electrode. Chem Phys Lett 108:195–199

    Article  CAS  Google Scholar 

  41. Horswell SL, Zamlynny V, Li H-Q, Merrill AR, Lipkowski J (2002) Electrochemical and PM IRRAS studies of potential controlled transformations of phospholipid layers on Au(111) electrodes. Faraday Discuss 121:405–422

    Article  CAS  Google Scholar 

  42. Zawisza I, Nullmeier M, Pust SE, Boukherroub R, Szunerits S, Wittstock G (2008) Application of thin titanium/titanium oxide layers deposited on gold for infrared reflection absorption spectroscopy: structural studies of lipid bilayers. Langmuir 42:7378–7387

    Article  CAS  Google Scholar 

  43. Ramin MA, Le Bourdon G, Daugey N, Bennetau B, Vellutini L, Buffeteau T (2011) PM-IRRAS investigation of self-assembled monolayers grafted onto SiO2/au substrates. Langmuir 27:6076–6084

    Article  CAS  PubMed  Google Scholar 

  44. Brand I, Habecker F, Ahlers M, Klüner T (2015) Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy. Spectrochim Acta, Part A 138:261–224

    Article  CAS  Google Scholar 

  45. Zawisza I, Wittstock G, Boukherroub R, Szunerits S (2008) Polarization modulation infrared reflection absorption spectroscopy investigations of thin silica films deposited on gold. 2. Structural analysis of a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer. Langmuir 24:3922–3929

    Article  CAS  PubMed  Google Scholar 

  46. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine. Springer, Berlin

    Book  Google Scholar 

  47. Blaudez D, Buffeteau T, Desbat B, Fournier P, Ritcey AM, Pezolet M (1998) Infrared reflection-absorption spectroscopy of thin organic films on nonmetallic substrates: optimal angle of incidence. J Phys Chem B 102:99–105

    Article  CAS  Google Scholar 

  48. Porter MD, Bright TB, Allara DL (1986) Quantitative aspects of infrared external reflection spectroscopy: polymer/glassy carbon interface. Anal Chem 58:2461–2465

    Article  CAS  Google Scholar 

  49. Brand I, Rüdiger C, Hingerl K, Portenkirchner E, Kunze-Liebhäuser J (2015) Compact titanium oxycarbide: a new substrate for quantitative analysis of molecular films by means of infrared reflection absorption spectroscopy. J Phys Chem C 119:13767–13776

    Article  CAS  Google Scholar 

  50. Baker DF, Bragg RH (1983) The electrical conductivity and hall effect of glassy carbon. J Non-Cryst Solids 58:57–69

    Article  CAS  Google Scholar 

  51. Monyoncho EA, Zamlynny V, Woo TK, Baranova EA (2018) The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: new data processing and presentation. Analyst 143:2563–2573

    Article  CAS  PubMed  Google Scholar 

  52. Williams MW, Arakawa ET (1972) Optical properties of glassy carbon from 0 to 82 eV. J Appl Phys 43:3460–3463

    Article  CAS  Google Scholar 

  53. Russell JW, Overend J, Scanion K, Severson M, Bewick A (1982) Infrared spectrum of CO on a platinum electrode in acidic solution. J Phys Chem 86:3066–3068

    Article  CAS  Google Scholar 

  54. Zawisza I, Lipkowski J (2004) Layer by layer characterization of n-octadecanol films on Au(111) electrode surface–an in situ spectroelectrochemical investigation. Langmuir 20:4579–4589

    Article  CAS  PubMed  Google Scholar 

  55. Blatt S, Roscoe SG, Zamlynny V (2010) Effect of electrode position on features of electrochemical polarization modulation infrared reflection absorption spectroscopy (PM IRRAS). J Electroanal Chem 649:102–109

    Article  CAS  Google Scholar 

  56. Fringeli UP (1977) The structure of lipids and proteins studied by attenuated total reflection (ATR) infrared spectroscopy. II. Oriented layers of a homologous series: phosphatidylethanolamine to phosphatidylcholine. Z Naturforsch C Biosci 32:20–45

    Article  CAS  PubMed  Google Scholar 

  57. Fringeli UP (1981) A new crystalline phase of L-α-dipalmitoylphosphatidylcholine monohydrate. Biophys J 34:173–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. Wiley-LISS, New York

    Google Scholar 

  59. MacPhail RA, Strauss HL, Snyder RG, Elliger CA (1984) CH stretching modes and the structure of n-alkyl chains. 2. Long all-trans chains. J Phys Chem 88:334–341

    Article  CAS  Google Scholar 

  60. Cameron DG, Casal HL, Mantsch HH, Boulanger Y, Smith ICP (1981) The thermotropic behavior of dipalmitoyl phosphatidylcholine bilayers. Biophys J 35:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun YC, Chen JM (1997) Calculations of vibrational energy relaxation rates of C-H,D,T stretching modes on hydrogen-, deuterium-, and tritium-terminated H,D,T/C(111)11 diamond surfaces. J Phys Chem B 101:7082–7086

    Article  CAS  Google Scholar 

  62. http://avantilipids.com/. (2013). Accessed 02 April 2013

  63. Davidson T, Pons S, Bewick A, Schmidt PP (1981) Vibrational spectrosocpy of the electrode/electrolyte interface. Use of Fourier transform infrared spectroscopy. J Electroanal Chem 125:237–241

    Article  CAS  Google Scholar 

  64. Paulissen VB, Korzeniewski C (1993) IR spectroscopy as a probe of bisulfate absorption at platinum electrodes under aqueous electrochemical conditions: elimination of bulk interface by using a thin layer flow cell. J Electroanal Chem 351:329–335

    Article  CAS  Google Scholar 

  65. Buffeteau T, Desbat B, Blaudez D, Turlet JM (2000) Calibration procedure to derive IRRAS spectra from PM IRRAS spectra. Appl Spectrosc 54:1646–1650

    Article  CAS  Google Scholar 

  66. Allara DL, Nuzzo RG (1985) Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution–adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1:52–66

    Article  CAS  Google Scholar 

  67. Allara DL, Swalen JD (1982) An infrared reflection spectroscopy study of oriented cadmium arachidate monolayer films on evaporated silver. J Phys Chem 86:2700–2704

    Article  CAS  Google Scholar 

  68. Allara DL, Baca A, Pryde CA (1978) Distortions of band shapes in external reflection infrared spectra of thin polymer films on metal substrates. Macromolecules 11:1215–1220

    Article  CAS  Google Scholar 

  69. Wang H, Coss CS, Mudalige A, Polt RL, Pemberton JE (2013) A PM-IRRAS investigation of monorhamnolipid orientation at the air−water interface. Langmuir 29:4441–4450

    Article  CAS  PubMed  Google Scholar 

  70. Dignam MJ, Mamiche-Afara S (1988) Determination of the spectra of the optical constants of bulk phases via Fourier transform ATR. Spectrochim Acta, Part A 44:1435–1442

    Article  Google Scholar 

  71. Bin X, Zawisza I, Goddard JD, Lipkowski J (2005) Electrochemical and PM-IRRAS studies of potential driven transformations of phospholipid bilayers on a Au (111) electrode surface. Langmuir 21:330–347

    Article  CAS  PubMed  Google Scholar 

  72. Umemura J, Kamata T, Kawai T, Takenaka T (1990) Quantitative evaluation of molecular orientation in thin Langmuir-Blodgett filmy by FT-IR transmission and reflection absorption spectroscopy. J Phys Chem 94:62–67

    Article  CAS  Google Scholar 

  73. Zawisza I, Bin X, Lipkowski J (2007) Potential driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS. Langmuir 23:5180–5194

    Article  CAS  PubMed  Google Scholar 

  74. Bin X, Lipkowski J (2006) Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au(111) electrode. J Phys Chem B 110:26430–26441

    Article  CAS  PubMed  Google Scholar 

  75. Seelig A, Seelig J (1974) The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–4845

    Article  CAS  PubMed  Google Scholar 

  76. Edholm O (1982) Order parametrs in hydrocarbon chains. Chem Phys 65:259–270

    Article  CAS  Google Scholar 

  77. https://www.sigmaaldrich.com/catalog/substance/specacsealedflowcellforirspectroscopy. (2019)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brand, I. (2020). Polarization Modulation Infrared Reflection Absorption Spectroscopy: From Theory to Experiment. In: Application of Polarization Modulation Infrared Reflection Absorption Spectroscopy in Electrochemistry . Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-42164-9_2

Download citation

Publish with us

Policies and ethics