Skip to main content

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

The interface between the electrode material and the species in the electrolyte phase is the focus point of the electrochemical studies. Molecular-scale visualization of electrochemical processes describing electric potential-dependent changes in the composition, structure, conformation, packing and orientation of species adsorbing on the electrode surface is crucial to understand electrochemical reactions. Such studies require application of structure analyzing techniques in electrochemical experiments. Vibrational spectroscopy methods are widely used in in situ electrochemical experiments. Polarization modulation infrared reflection-absorption spectroscopy (PM IRRAS) has grown to one of the most important vibrational spectroscopy techniques applied to the electrochemical interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310–314

    Article  CAS  Google Scholar 

  2. Moskovits M (1982) Surface selection rules. J Chem Phys 77:4408–4416

    Article  CAS  Google Scholar 

  3. Hipps KW, Crosby GA (1979) Applications of the photoelastic modulator to polarization spectroscopy. J Phys Chem 83:555–562

    Article  CAS  Google Scholar 

  4. Golden WG, Dunn DS, Overend J (1981) A method for measuring infrared reflection-absorption spectra of molecules adsorbed on low-area surfaces at monolayer and submonolayer concentrations. J Catal 71:395–405

    Article  CAS  Google Scholar 

  5. Buffeteau T, Desbat B, Turlet JM (1991) Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl Spectrosc 45:380–388

    Article  CAS  Google Scholar 

  6. Golden WG, Kunimatsu K, Seki H (1984) Application of polarization-modulated Fourier transform infrared reflection-absorption spectroscopy to the study of carbon monooxide adsortpion and oxidation on a smooth platinum electrode. J Phys Chem 88:1275–1277

    Article  CAS  Google Scholar 

  7. Kunimatsu K, Seki H, Golden WG (1984) Polarization-modulated FTIR spectra of cyanide adsorbed on a silver electrode. Chem Phys Lett 108:195–199

    Article  CAS  Google Scholar 

  8. Kycia AH, Koczkur K, Leitch JJ, Lipkowski J, Zamlynny V, Petryk MWP (2013) Application of PM-IRRAS to study thin films of industrial and environmental samples. Anal Bioanal Chem 405:1537–1546

    Article  CAS  Google Scholar 

  9. Zamlynny V, Lipkowski J (2006) Quantitative SNIFTIRS and PM IRRAS of organic molecules at electrode surfaces. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Advances in electrochemical science and engineering, Diffraction and spectroscopic methods in electrochemistry, vol 9. Wiley-VCH, Weinheim, pp 315–376

    Chapter  Google Scholar 

  10. Brand I (2016) Application of polarization modulation infrared reflection absorption spectroscopy under electrochemical control for structural studies of biomimetic assemblies. Z Phys Chem 230:133–183

    Article  CAS  Google Scholar 

  11. Zamlynny V, Zawisza I, Lipkowski J (2003) PM FTIRRAS studies of potential-controlled transformations of a monolayer and a bilayer of 4-pentadecylpyridine a model surfactant adsorbed on a Au(111) electrode surface. Langmuir 19:132–145

    Article  CAS  Google Scholar 

  12. Zawisza I, Lipkowski J (2004) Layer by layer characterization of n-octadecanol films on Au(111) electrode surface – an in situ spectroelectrochemical investigation. Langmuir 20:4579–4589

    Article  CAS  Google Scholar 

  13. Horswell SL, Zamlynny V, Li H-Q, Merrill AR, Lipkowski J (2002) Electrochemical and PM IRRAS studies of potential controlled transformations of phospholipid layers on Au(111) electrodes. Faraday Discuss 121:405–422

    Article  CAS  Google Scholar 

  14. Zawisza I, Lachenwitzer A, Zamlynny V, Horswell SL, Goddard JD, Lipkowski J (2003) Electrochemical and photon polarization modulation infrared reflection absorption spectroscopy study of the electric field driven transformations of a phospholipid bilayer supported at a gold electrode surface. Biophys J 86:4055–4075

    Article  Google Scholar 

  15. Bin X, Horswell SL, Lipkowski J (2005) Electrochemical and PM-IRRAS studies of the effect of cholesterol on the structure of a DMPC bilayer supported at an Au (111) electrode surface, Part 1: Properties of the acyl chains. Biophys J 89:592–604

    Article  CAS  Google Scholar 

  16. Matyszewska D, Bilewicz R, Su ZF, Abbasi F, Leitch JJ, Lipkowski J (2016) PM-IRRAS studies of DMPC bilayer supported on Au(111) electrodes modified with hydrophilic monolayers of thioglucose. Langmuir 32:1791–1798

    Article  CAS  Google Scholar 

  17. Su FZ, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J (2018) In situ electrochemical and PM-IRRAS studies of alamethicin ion channel formation in model phospholipid bilayers. J Electroanal Chem 819:251–259

    Article  CAS  Google Scholar 

  18. Zawisza I, Bin X, Lipkowski J (2007) Potential driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS. Langmuir 23:5180–5194

    Article  CAS  Google Scholar 

  19. Ahlers M, Stein N, Broch L, Brand I (2013) Study of the potential driven changes in a collagen film self-assembled on a polycrystalline gold electrode surface. J Electroanal Chem 706:140–148

    Article  CAS  Google Scholar 

  20. Brand I, Matyszewska D, Koch KW (2018) Binding of a myristoylated protein to the lipid membrane influenced by interactions with the polar head group region. Langmuir 34:14022–14032

    Article  CAS  Google Scholar 

  21. Kekedy-Nagy L, Ferapontova EE, Brand I (2017) Submolecular structure and orientation of oligonucleotide duplexes tethered to gold electrodes probed by infrared reflection absorption spectroscopy: effect of the electrode potentials. J Phys Chem C 121:1552–1565

    Article  CAS  Google Scholar 

  22. Nullmeier M, Koliwer-Brandl H, Kelm S, Zägel P, Koch KW, Brand I (2011) Impact of strong and weak lipid-protein interaction on the structure of a lipid bilayer on a gold electrode surface. ChemPhysChem 12:1066–1079

    Article  CAS  Google Scholar 

  23. Madrid E, Horswell SL (2013) Effect of headgroup on the physicochemcial properties of phospholipid bilayers in electric fields: size matters. Langmuir 29:1695–1708

    Article  CAS  Google Scholar 

  24. Madrid E, Horswell SL (2014) Effect of electric field on structure and dynamics of bilayers formed from anionic phospholipids. Electrochim Acta 146:850–860

    Article  CAS  Google Scholar 

  25. Bin X, Lipkowski J (2006) Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au(111) electrode. J Phys Chem B 110:26430–26441

    Article  CAS  Google Scholar 

  26. Garcia-Araez N, Brosseau CL, Rodriguez P, Lipkowski J (2006) Layer-by-layer PM IRRAS characterization of DMPC bilayers deposited on a Au(111) electrode surface. Langmuir 22:10365–10371

    Article  CAS  Google Scholar 

  27. Kycia AH, Su ZF, Brosseau CL, Lipkowski J (2013) In situ PM-IRRAS studies of biomimetic membranes supported at a gold electrode surface. In: Wieckowski A, Korzeniewski C, Braunschweig B (eds) Vibration spectroscopy at electrified interfaces. Willey, Heidelberg, pp 345–417

    Chapter  Google Scholar 

  28. Brand I, Juhaniewicz J, Verani CN, Wickramasinghe L (2018) An in situ spectroelectrochemical study on the orientation changes of an [FeIIILN2O3] metallosurfactant deposited as LB films on gold electrode surfaces. Dalton Trans 47:14218–14226

    Article  CAS  Google Scholar 

  29. Grumelli D, Mendez De Leo LP, Bonazzola C, Zamlynny V, Calvo EJ, Salvarezza RC (2010) Methylene blue incorporation into alkanethiol SAMs on Au(111): effect of hydrocarbon chain ordering. Langmuir 26:8226–8232

    Article  CAS  Google Scholar 

  30. Tagliazucchi M, Méndez De Leo LP, Cadranel A, Baraldo LM, Völker E, Bonazzola C, Calvo EJ, Zamlynny V (2010) PM IRRAS spectroelectrochemistry of layer-by-layer self-assembled polyelectrolyte multilayers. J Electroanal Chem 649:110–118

    Article  CAS  Google Scholar 

  31. Monyoncho EA, Zamlynny V, Woo TK, Baranova EA (2018) The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: new data processing and presentation. Analyst (Cambridge, UK) 143:2563–2573

    Article  CAS  Google Scholar 

  32. Dongmo S, Wittstock G, Christoffers J, Brand I (2017) In situ determination of potential-driven structural changes in a redox-active plumbagin polymer film on a glassy carbon electrode using PM IRRAS under electrochemical control. Electrochim Acta 255:298–308

    Article  CAS  Google Scholar 

  33. Monyoncho EA, Steinmann SN, Michel C, Baranova EA, Woo TK, Sautet P (2016) Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): why is it difficult to break the C−C bond? ACS Catal 6:4894–4906

    Article  CAS  Google Scholar 

  34. Vieira L, Schennach R, Gollas B (2015) In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Phys Chem Chem Phys 17:12870–12880

    Article  CAS  Google Scholar 

  35. Brand I, Rüdiger C, Hingerl K, Portenkirchner E, Kunze-Liebhäuser J (2015) Compact titanium oxycarbide: a new substrate for quantitative analysis of molecular films by means of infrared reflection absorption spectroscopy. J Phys Chem C 119:13767–13776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brand, I. (2020). Introduction. In: Application of Polarization Modulation Infrared Reflection Absorption Spectroscopy in Electrochemistry . Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-42164-9_1

Download citation

Publish with us

Policies and ethics