Skip to main content

Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs

  • Chapter
  • First Online:
Treewidth, Kernels, and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12160))

  • 818 Accesses

Abstract

Recently it was shown that many classic graph problems—Independent Set, Dominating Set, Hamiltonian Cycle, and more—can be solved in subexponential time on unit-ball graphs. More precisely, these problems can be solved in \(2^{O(n^{1-1/d})}\) time on unit-ball graphs in \(\mathbb {R}^d\), which is tight under ETH. The result can be generalized to intersection graphs of similarly-sized fat objects.

For Independent Set the same running time can be achieved for non-similarly-sized fat objects, and for the weighted version of the problem. We show that such generalizations most likely are not possible for Dominating Set: assuming ETH, we prove that

  • there is no algorithm with running time \(2^{o(n)}\) for Dominating Set on (non-unit) ball graphs in \(\mathbb {R}^3\);

  • there is no algorithm with running time \(2^{o(n)}\) for Weighted Dominating Set on unit-ball graphs in \(\mathbb {R}^3\);

  • there is no algorithm with running time \(2^{o(n)}\) for Dominating Set, Connected Dominating Set, or Steiner Tree on intersections graphs of arbitrary convex (but non-constant-complexity) objects in the plane.

This research was supported by the Netherlands Organization for Scientific Research NWO under project no. 024.002.003 (Networks).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, it turns out that one can also argue that the existence of these edges is not needed for the reduction to work. We prefer to work with the specific graph \(\mathcal {G}_\phi \) defined earlier, and therefore need to show that our geometric representation includes all edges in the clique.

  2. 2.

    Alternatively, one could give the dummies a weight of 1, and add a unique neighbor to each of them with weight \(\infty \), which ensures that they are contained in all finite weight dominating sets.

References

  1. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Kolay, S.: An ETH-tight exact algorithm for Euclidean TSP. In: Proceedings of the 59th IEEE Symposium Foundations Computer Science (FOCS), pp. 450–461 (2018)

    Google Scholar 

  2. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.: A framework for ETH-tight algorithms and lower bounds in geometric intersection graphs. In: Proceedings of the 50th ACM Symposium Theory Computer (STOC), pp. 574–586 (2018)

    Google Scholar 

  3. de Berg, M., Kisfaludi-Bak, S., Woeginger, G.: The complexity of dominating set in geometric intersection graphs. Theor. Comput. Sci. 769, 18–31 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \(c^k n\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. van den Eijkhof, F., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica 47(2), 139–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. Theory Appl. 9, 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bringmann, K., Kisfaludi-Bak, S., Pilipczuk, M., van Leeuwen, E.J.: On geometric set cover for orthants. In: Proceedings of the 27th European Symposium on Algorithms (ESA), pp. 26:1–26:18 (2019)

    Google Scholar 

  9. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  10. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discret. Comput. Geom. 47, 548–568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kisfaludi-Bak, S.: ETH-tight algorithms for geometric network problems. Ph.D. thesis, Technische Universiteit Eidnhoven (2019)

    Google Scholar 

  13. Kisfaludi-Bak, S., Marx, D., van der Zanden, T.C.: How does object fatness impact the complexity of packing in d dimensions? In: Proceedings of the 30th International Symposium on Algorithms and Computation (ISAAC) (2019, to appear)

    Google Scholar 

  14. Koebe, P.: Kontaktprobleme der konformen Abbildung (1936). Hirzel

    Google Scholar 

  15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. App. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marx, D.: The square root phenomenon in planar graphs. In: Proceedings of the 40th International Colloquium on Automata, Languages, and Programming (ICALP), part II, p. 28 (2013)

    Google Scholar 

  18. Marx, D., Pilipczuk, M.: Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 865–877. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_72

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Kisfaludi-Bak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Berg, M., Kisfaludi-Bak, S. (2020). Lower Bounds for Dominating Set in Ball Graphs and for Weighted Dominating Set in Unit-Ball Graphs. In: Fomin, F.V., Kratsch, S., van Leeuwen, E.J. (eds) Treewidth, Kernels, and Algorithms. Lecture Notes in Computer Science(), vol 12160. Springer, Cham. https://doi.org/10.1007/978-3-030-42071-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42071-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42070-3

  • Online ISBN: 978-3-030-42071-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics