Skip to main content

A Survey on Spanning Tree Congestion

  • Chapter
  • First Online:
Treewidth, Kernels, and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12160))

Abstract

In this short survey dedicated to Hans L. Bodlaender on the occasion of his 60th birthday, we review known results and open problems about the spanning tree congestion problem. We focus mostly on the algorithmic results, where his contribution was precious.

Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168, JP18K11169.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ostrovskii [36] later showed that this bound holds even for bipartite graphs.

  2. 2.

    The \(O^{*}\) notation suppresses the factors polynomial in the input size. See [15].

References

  1. REU project: California State University, San Bernardino. https://www.math.csusb.edu/reu/studentwork.html. Accessed 13 Sept 2019

  2. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. STOC 2007, 67–74 (2007). https://doi.org/10.1145/1250790.1250801

    Article  MATH  Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Fomin, F.V., Golovach, P.A., Otachi, Y., van Leeuwen, E.J.: Parameterized complexity of the spanning tree congestion problem. Algorithmica 64(1), 85–111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Kozawa, K., Matsushima, T., Otachi, Y.: Spanning tree congestion of \(k\)-outerplanar graphs. Discrete Math. 311(12), 1040–1045 (2011). https://doi.org/10.1016/j.disc.2011.03.002

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM (1999)

    Google Scholar 

  8. Brandstädt, A., Lozin, V.V.: On the linear structure and clique-width of bipartite permutation graphs. Ars Comb. 67, 273–281 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8(3), 359–387 (1995). https://doi.org/10.1137/S0895480192237403

    Article  MathSciNet  MATH  Google Scholar 

  10. Castejón, A., Ostrovskii, M.I.: Minimum congestion spanning trees of grids and discrete toruses. Discuss. Math. Graph Theory 29(3), 511–519 (2009). https://doi.org/10.7151/dmgt.1461

    Article  MathSciNet  MATH  Google Scholar 

  11. Chandran, L.S., Cheung, Y.K., Issac, D.: Spanning tree congestion and computation of generalized Győri-Lovász partition. In: ICALP 2018. LIPIcs, vol. 107, pp. 32:1–32:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.32

  12. Chen, J., Kleinberg, R.D., Lovász, L., Rajaraman, R., Sundaram, R., Vetta, A.: (Almost) tight bounds and existence theorems for single-commodity confluent flows. J. ACM 54(4), 16 (2007). https://doi.org/10.1145/1255443.1255444

    Article  MathSciNet  MATH  Google Scholar 

  13. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. Theor. Inform. Appl. 26, 257–286 (1992). https://doi.org/10.1051/ita/1992260302571

    Article  MathSciNet  MATH  Google Scholar 

  14. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  15. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Mathematics, 2nd edn., vol. 57, North Holland (2004)

    Google Scholar 

  17. Győri, E.: On division of graphs to connected subgraphs. Combinatorics, pp. 485–494 (1978). Proceedings of Fifth Hungarian Combinatorial Coll., 1976, Keszthely

    Google Scholar 

  18. Hlinený, P., Oum, S.-I., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008). https://doi.org/10.1093/comjnl/bxm052

    Article  Google Scholar 

  19. Hruska, S.W.: On tree congestion of graphs. Discrete Math. 308(10), 1801–1809 (2008). https://doi.org/10.1016/j.disc.2007.04.030

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozawa, K., Otachi, Y.: On spanning tree congestion of hamming graphs. CoRR, abs/1110.1304 (2011). arXiv:1110.1304

  21. Kozawa, K., Otachi, Y.: Spanning tree congestion of Rook’s graphs. Discuss. Math. Graph Theory 31(4), 753–761 (2011). https://doi.org/10.7151/dmgt.1577

    Article  MathSciNet  MATH  Google Scholar 

  22. Kozawa, K., Otachi, Y., Yamazaki, K.: On spanning tree congestion of graphs. Discrete Math. 309(13), 4215–4224 (2009). https://doi.org/10.1016/j.disc.2008.12.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Kohei, K.: Spanning tree congestion problem on graphs of small diameter. Master’s thesis, Kyushu University (2015). (in Japanese)

    Google Scholar 

  24. Kubo, K., Yamauchi, Y., Kijima, S., Yamashita, M.: Approximating the spanning tree congestion for split graphs with iterative rounding. IPSJ SIG Technical Report, 2014-AL-150(17), 1–8 (2014). http://id.nii.ac.jp/1001/00106885/. (in Japanese)

  25. Kubo, K., Yamauchi, Y., Kijima, S., Yamashita, M.: Spanning tree congestion problem on graphs of small diameter. RIMS Kôkyûroku 1941, 17–21 (2015). http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1941-03.pdf. (in Japanese)

  26. Law, H.-F.: Spanning tree congestion of the hypercube. Discrete Math. 309(23–24), 6644–6648 (2009). https://doi.org/10.1016/j.disc.2009.07.007

    Article  MathSciNet  MATH  Google Scholar 

  27. Law, H.-F., Leung, S.L., Ostrovskii, M.I.: Spanning tree congestion of planar graphs. Involve. A J. Math. 7(2), 205–226 (2014). https://doi.org/10.2140/involve.2014.7.205

  28. Law, H.-F., Ostrovskii, M.I.: Spanning tree congestion: duality and isoperimetry; with an application to multipartite graphs. Graph Theory Notes N. Y. 58, 18–26 (2010). http://gtn.kazlow.info/GTN58.pdf

  29. Law, H.-F., Ostrovskii, M.I.: Spanning tree congestion of some product graphs. Indian J. Math. 52(Suppl.), 103–111 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Lovász, L.: A homology theory for spanning tress of a graph. Acta Math. Acad. Sci. Hung. 30(3–4), 241–251 (1977). https://doi.org/10.1007/BF01896190

    Article  Google Scholar 

  31. Löwenstein, C.: In the complement of a dominating set. Ph.D. thesis, Technische Universität Ilmenau (2010). https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2010000233

  32. Löwenstein, C., Rautenbach, D., Regen, F.: On spanning tree congestion. Discrete Math. 309(13), 4653–4655 (2009). https://doi.org/10.1016/j.disc.2009.01.012

    Article  MathSciNet  MATH  Google Scholar 

  33. Okamoto, Y., Otachi, Y., Uehara, R., Uno, T.: Hardness results and an exact exponential algorithm for the spanning tree congestion problem. J. Graph Algorithms Appl. 15(6), 727–751 (2011). https://doi.org/10.7155/jgaa.00246

    Article  MathSciNet  MATH  Google Scholar 

  34. Ostrovskii, M.I.: Minimal congestion trees. Discrete Math. 285(1–3), 219–226 (2004). https://doi.org/10.1016/j.disc.2004.02.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Ostrovskii, M.I.: Minimum congestion spanning trees in planar graphs. Discrete Math. 310(6–7), 1204–1209 (2010). https://doi.org/10.1016/j.disc.2009.11.016

    Article  MathSciNet  MATH  Google Scholar 

  36. Ostrovskii, M.I.: Minimum congestion spanning trees in bipartite and random graphs. Acta Mathematica Scientia 31B(2), 634–640 (2011). https://doi.org/10.1016/S0252-9602(11)60263-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Otachi, Y., Bodlaender, H.L., van Leeuwen, E.J.: Complexity results for the spanning tree congestion problem. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 3–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_3

    Chapter  Google Scholar 

  38. Simonson, S.: A variation on the min cut linear arrangement problem. Math. Syst. Theory 20(4), 235–252 (1987). https://doi.org/10.1007/BF01692067

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yota Otachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otachi, Y. (2020). A Survey on Spanning Tree Congestion. In: Fomin, F.V., Kratsch, S., van Leeuwen, E.J. (eds) Treewidth, Kernels, and Algorithms. Lecture Notes in Computer Science(), vol 12160. Springer, Cham. https://doi.org/10.1007/978-3-030-42071-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42071-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42070-3

  • Online ISBN: 978-3-030-42071-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics