Skip to main content

Algorithms for NP-Hard Problems via Rank-Related Parameters of Matrices

  • Chapter
  • First Online:
Treewidth, Kernels, and Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12160))

  • 888 Accesses

Abstract

We survey a number of recent results that relate the fine-grained complexity of several NP-Hard problems with the rank of certain matrices. The main technical theme is that for a wide variety of Divide & Conquer algorithms, structural insights on associated partial solutions matrices may directly lead to speedups.

Supported by the Netherlands Organization for Scientific Research under project no. 024.002.003 and the European Research Council under project no. 617951.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since things get a bit tricky formally here, let’s just say we restrict attention to the fields \(\mathbb {R}\) and \(\mathbb {F}_p\) for finite p.

  2. 2.

    https://aimath.org/pastworkshops/matrixspectrum.html.

  3. 3.

    At least, to the author.

  4. 4.

    See e.g. http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/l03.pdf.

  5. 5.

    For ease of exposition, we discuss a less general variant of the Steiner tree problem. The same methods can also solve more general versions within time that only depends linearly on the number of vertices, see [BCKN15] or the exposition in [CFK+15].

  6. 6.

    Indeed, the idea of representing partial solutions with a strict subset is natural, but to the author’s knowledge [Mon85] was the first paper (in parameterized complexity) to use a generalization of this concept beyond equivalence classes.

  7. 7.

    As a minor technical caveat, both \(\mathbf {L}_t\) and \(\mathbf {R}_t\) need to be explicit.

  8. 8.

    This hypothesis postulates that for every \(\varepsilon >0\) there is an integer k such k-CNF satisfiability on n variables cannot be solved in \(O^*((2-\varepsilon )^n)\) time.

References

  1. Alman, J., Williams, R.R.: Probabilistic rank and matrix rigidity. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 641–652 (2017)

    Google Scholar 

  2. Abboud, A., Williams, R.R., Yu, H.: More applications of the polynomial method to algorithm design. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January 2015, pp. 218–230 (2015)

    Google Scholar 

  3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-662-03338-8

    Book  MATH  Google Scholar 

  6. Bansal, N., Eliás, M., Koumoutsos, G., Nederlof, J.: Competitive algorithms for generalized k-server in uniform metrics. In: Czumaj, A., (ed.), Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 992–1001. SIAM (2018)

    Google Scholar 

  7. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings in halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04128-0_52

    Chapter  Google Scholar 

  8. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. J. Comput. Syst. Sci. 87, 119–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  10. Cygan, M., Kratsch, S., Nederlof, J.: Fast Hamiltonicity checking via bases of perfect matchings. In: Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013, pp. 301–310 (2013)

    Google Scholar 

  11. Curticapean, R., Lindzey, N., Nederlof, J.: A tight lower bound for counting Hamiltonian cycles via matrix rank. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 1080–1099 (2018)

    Google Scholar 

  12. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Ostrovsky, R. (ed.), IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp. 150–159. IEEE Computer Society (2011)

    Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Freivalds, R.: Probabilistic machines can use less running time. In: Information Processing, Proceedings of the 7th IFIP Congress 1977, Toronto, Canada, 8–12 August 1977, pp. 839–842 (1977)

    Google Scholar 

  15. Jansen, B.M.P., Nederlof, J.: Computing the chromatic number using graph decompositions via matrix rank. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Symposium on Algorithms, ESA 2018, 20–22 August 2018, Helsinki, Finland. LIPIcs, vol. 112, pp. 47:1–47:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  16. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  17. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms 10(4), 20:1–20:15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of linear matroids. ACM Trans. Algorithms 14(2), 14:1–14:20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lozin, V.V.: On maximum induced matchings in bipartite graphs. Inf. Process. Lett. 81(1), 7–11 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lovász, L., Saks, M.E.: Lattices, Möbius functions and communication complexity. In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, USA, 24–26 October 1988, pp. 81–90. IEEE Computer Society (1988)

    Google Scholar 

  21. Matoušek, J.: Thirty-Three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra, vol. 53. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  22. Monien, B.: How to find long paths efficiently. North-Holland Math. Stud. 109, 239–254 (1985). Analysis and Design of Algorithms for Combinatorial Problems

    Article  MathSciNet  MATH  Google Scholar 

  23. Nederlof, J.: Faster subset sum via improved orthogonal vectors (2017). http://www.win.tue.nl/~jnederlo/problem.pdf

  24. Nederlof, J.: Bipartite TSP in \(O(1.9999^n)\) time, assuming quadratic time matrix multiplication (2019). Unpublished

    Google Scholar 

  25. Pratt, K.: Faster algorithms via waring decompositions. In: The Proceedings of FOCS 2018 (2018, to appear)

    Google Scholar 

  26. Raz, R., Spieker, B.: On the “log rank”-conjecture in communication complexity. Combinatorica 15(4), 567–588 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Williams, R.: The polynomial method in circuit complexity applied to algorithm design (invited talk). In: Raman, V., Suresh, S.P. (eds.), 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, 15–17 December 2014, New Delhi, India. LIPIcs, vol. 29, pp. 47–60. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

    Google Scholar 

  28. de Wolf, R.: Nondeterministic quantum query and communication complexities. SIAM J. Comput. 32(3), 681–699 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zehavi, M.: Mixing color coding-related techniques. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 1037–1049. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_86

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to thank Johan van Rooij and Stefan Kratsch for their valuable feedback on a previous version of this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Nederlof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nederlof, J. (2020). Algorithms for NP-Hard Problems via Rank-Related Parameters of Matrices. In: Fomin, F.V., Kratsch, S., van Leeuwen, E.J. (eds) Treewidth, Kernels, and Algorithms. Lecture Notes in Computer Science(), vol 12160. Springer, Cham. https://doi.org/10.1007/978-3-030-42071-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42071-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42070-3

  • Online ISBN: 978-3-030-42071-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics