Skip to main content

Quantitative Analysis and Objective Comparison of Clustering Algorithms for Medical Image Segmentation

  • Conference paper
  • First Online:
  • 1647 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12034))

Abstract

The paper describes the implementation of non-hierarchical methods k-means and fuzzy c-means on nosily images from different medical modalities as computed tomography and magnetic resonance. Modern devices are created on the basis of advanced technology, both during the actual acquisition of the image and subsequently during its processing. The problem is caused by the unexpected disturbance of the image by parasitic noise, which may already occur in the electronics of the device or in dependence on the phenomena caused by the external environment. The testing was carried out on 3 datasets of medical images and the evaluation per individual images was determined based on the correlation factor and the mean quadratic error. The result is evaluation of non-hierarchical clustering techniques for the creation of mathematical models of tissue depending on the noise intensity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Garreta, R., Moncecchi, G.: Learning Scikit-Learn: Machine Learning in Python. Packt Publishing Limited, Birmingham (2013). 118 pages. ISBN 978-1-78328-193-0

    Google Scholar 

  2. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997). ISBN 978-0070428072

    MATH  Google Scholar 

  3. Kumar, S., Toshniwal D.: A data mining framework to analyze road accident data. J. Big Data 2(1) (2015). https://doi.org/10.1186/s40537-015-0035-y. ISSN 2196-1115

  4. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering. Chapman and Hall/CRC, Boca Raton (2018). https://doi.org/10.1201/9781315373515. ISBN 9781315373515

    Book  Google Scholar 

  5. Olson, D.L., Lauhoff, G.: Descriptive Data Mining. Computational Risk Management, pp. 129–130. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7181-3_8. ISBN 978-981-13-7180-6

    Book  Google Scholar 

  6. Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., Mathieu, C.: Hierarchical clustering. J. ACM 66(4), 1–42 (2019). https://doi.org/10.1145/3321386. ISSN 00045411

    Article  MATH  Google Scholar 

  7. Siddique, M.A., Arif, R.B., Khan, M.M., Ashrafi, Z.: Implementation of fuzzy c-means and possibilistic c-means clustering algorithms, cluster tendency analysis and cluster validation. arXiv, abs/1809.08417 (2018)

    Google Scholar 

  8. Huang, H., Meng, F., Zhou, S., Jiang, F., Manogaran, G.: Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7, 12386–12396 (2019). https://doi.org/10.1109/ACCESS.2019.2893063. ISSN 2169-3536

    Article  Google Scholar 

  9. Dudarin, P., Samokhvalov, M., Yarushkina, N.: An approach to feature space construction from clustering feature tree. In: Kuznetsov, S.O., Osipov, G.S., Stefanuk, V.L. (eds.) RCAI 2018. CCIS, vol. 934, pp. 176–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00617-4_17. ISBN 978-3-030-00616-7

    Chapter  Google Scholar 

  10. Berenguer, R., et al.: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2), 407–415 (2018). https://doi.org/10.1148/radiol.2018172361. ISSN 0033-8419

    Article  Google Scholar 

  11. Schubert, E., Rousseeuw, P.J.: Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 171–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_16. ISBN 978-3-030-32046-1

    Chapter  Google Scholar 

  12. Fuentes-Penailillo, F., Ortega-Farias, S., Rivera, M., Bardeen, M., Moreno, M.: Using clustering algorithms to segment UAV-based RGB images. In: 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), pp. 1–5. IEEE (2018). https://doi.org/10.1109/ica-acca.2018.8609822. ISBN 978-1-5386 5586-3

  13. Singh, V., Dev, R., Dhar, N.K., Agrawal, P., Verma, N.K.: Adaptive type-2 fuzzy approach for filtering salt and pepper noise in grayscale images. IEEE Trans. Fuzzy Syst. 26(5), 3170–3176 (2018). https://doi.org/10.1109/TFUZZ.2018.2805289. ISSN 1063-6706

    Article  Google Scholar 

  14. Khwairakpam, A., Kandar, D., Paul, B.: Noise reduction in synthetic aperture radar images using fuzzy logic and genetic algorithm. Microsyst. Technol. 25(5), 1743–1752 (2019). https://doi.org/10.1007/s00542-017-3474-x. ISSN 0946-7076

    Article  Google Scholar 

Download references

Acknowledgement

The work and the contributions were supported by the project SV450994/2101 Biomedical Engineering Systems XV’. This study was also supported by the research project The Czech Science Foundation (GACR) 2017 No. 17-03037S Investment evaluation of medical device development run at the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic. This study was supported by the research project The Czech Science Foundation (TACR) ETA No. TL01000302 Medical Devices development as an effective investment for public and private entities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kubíček .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krestanova, A. et al. (2020). Quantitative Analysis and Objective Comparison of Clustering Algorithms for Medical Image Segmentation. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12034. Springer, Cham. https://doi.org/10.1007/978-3-030-42058-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42058-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42057-4

  • Online ISBN: 978-3-030-42058-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics