Skip to main content

Limitations for Extraterrestrial Colonisation and Civilisation Built and the Potential for Human Enhancements

  • Chapter
  • First Online:
Human Enhancements for Space Missions

Part of the book series: Space and Society ((SPSO))

Abstract

Human beings are poorly adapted to live and work in space for long periods of time. This situation poses as yet insurmountable challenges for deep space travel and the colonisation of other worlds including those in our solar systems such as the Moon or Mars. Research road maps have been built by multi-disciplinary teams working internationally to explore the development of artificial gravity and protection of the body against radiation including the potential for human enhancement by techniques such as gene editing. Terrestrial technological advances in the development of prosthetic limbs and tissue-engineered organs which may be accompanied by the production of exoskeletal structure offer further opportunities for human augmentation. Finally, progress in the generation of brain–computer interface-based communication systems in patients who are unable to communicate may offer more futuristic applications for building a society of hybrid human avatars as future colonists of New World civilisations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature Communications, 9, Article number: 1911.

    Google Scholar 

  • Aflalo, T., Kellis, S., Klaes, C., et al. (2015). Decoding motor imagery from a posterior parietal cortex of a tertrplegic human. Science, 348, 906–910.

    ADS  Google Scholar 

  • Agrawal, A., Dube, A. N., Kansara, D., Shah, S., & Sheth, S. (2018). Exoskeleton: The friend of mankind in context of rehabilitation and enhancement. Indian Journal of Science and Technology., 9(S1), 1–8.

    Google Scholar 

  • Alcibiade, A., Del Mastro, A., Schlacht, I. L., et al. (2018). Stress and human factors from Antarctica to Mars. In International Conference on Applied Human Factors and Ergonomics (pp. 183–194). Springer.

    Google Scholar 

  • Approved Cellular and Gene Therapy Products. (2019). United States Food and Drug Administration (2019). Retrieved on December 12, 2019 from https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products.

  • Austin, A., & Buchanan, A. (2018). Better than human: The promise and perils of biomedical enhancement. Medical Law Review, 26, 357–361.

    Google Scholar 

  • Awad, L. N., Bae, J., O’Donnell, K., et al. (2017). A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine, 9, eaai9084.

    Google Scholar 

  • Bartone, P. T., Roland, R. R., Bartone, J. V., et al. (2019). Human adaptability for deep space missions: An exploratory study. Journal of Human Performance in Extreme Environments, 15, Article 5.

    Google Scholar 

  • Basner, M., Dinges, D. F., Mollicone, D., et al. (2013). Mars 520-d mission simulation reveals protracted crew hypokinesis and alterations of sleep duration and timing. Proceedings of the National Academy of Sciences USA, 110, 2365–2640.

    Google Scholar 

  • Baylis, F. (2017). The potential harms of human gene editing using CRISPR-Cas9. Clinical Chemistry, 64, 489–491.

    Google Scholar 

  • Binsted, K., Kobrick, R. L., Griofa, M. O., Bishop, S., & Lapierre, J. (2010). Human factors research as part of a Mars exploration analogue mission of Devon island. Planetary and Space Science, 58, 994–1006.

    ADS  Google Scholar 

  • Blagosklonny, M. V. (2006). Aging and immortality: Quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle, 5, 2087–2102.

    Google Scholar 

  • Blagosklonny, M. V. (2007). An anti-aging drug today: From senescence-promoting genes to anti-aging pill. Drug Discovery Today, 12, 218–224.

    Google Scholar 

  • Blagosklonny, M. H. (2019). Rapamycin for longevity: Opinion article. Aging, 11, 8048–8067.

    Google Scholar 

  • Blue, R. S., Chancellor, J. C., Antonsen, E. L., et al. (2019). Limitations in predicting radiation-induced pharmaceutical instability during long-duration spaceflight. Npj Microgravity, 5, 15.

    Google Scholar 

  • Boyden, L. M., Mao, J., Belsky, J., et al. (2002). High bone density due to a mutation in the LDL-receptor-related protein 5. New England Journal of Medicine, 346, 1513–1521.

    Google Scholar 

  • Braddock, M. (2017). Ergonomic challenges for astronauts during space travel and the need for space medicine. Journal of Ergonomics, 7, 1–10.

    Google Scholar 

  • Braddock, M. (2018). Exercise and ergonomics on the International Space Station and Orion spacecraft. Journal of Ergonomics Research, 1, 2. https://doi.org/10.4172/JEOR.1000104.

    Article  Google Scholar 

  • Braddock, M. (2019). From target identification to drug development in space: Using the microgravity assist. Current Drug Discovery Technologies, 16, 1–11.

    Google Scholar 

  • Braddock, M., Wilhelm, C.P., Romain, A., Bale, L., & Szocik, K. (2019a). Application of socio-technical systems models to Martian colonisation and society build. Theoretical Issues in Ergonomics Science. https://doi.org/10.1080/1463922X.2019.1658242.

  • Braddock, M., Campa, R., & Szocik, K. (2019b). Ergonomic constraints for astronauts: Challenges and opportunities today and for the future. In Proceedings of the International Conference on Ergonomics and Human Factors 2019 (1st ed.), Stratford-Upon-Avon, 29 April–1 May 2019.

    Google Scholar 

  • Brown, M., Tsagarakis, N., & Caldwell, D. G. (2003). Exoskeletons for human force augmentation. Industrial Robot: An International Journal, 30, 592–602.

    Google Scholar 

  • Burgers, T. A., Vivanco, J. F., Zahatnansky, J., et al. (2016). Mice with a heterozygous Lrp6 deletion have impaired fracture healing. Bone Research, 4, 16025.

    Google Scholar 

  • Byrne, R. T., Chen, S. H., Wood, E. A., Cabot, E. L., & Cox, M. M. (2014). Escherichia coli genes and pathways involved in surviving extreme exposure to ionizing radiation. Journal of Bacteriology, 196, 3534–3545.

    Google Scholar 

  • Campa, R., Szocik, K., & Braddock, M. (2019). Why space colonisation will be fully automated. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2019.03.021.

    Article  Google Scholar 

  • Ceballos, G., Ehrlich, P. R., Barnosky, A. D., et al. (2015). Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.

    ADS  Google Scholar 

  • Chaudhary, U., Xia, B., Silvoni, S., Cohen, L. G., & Birmbauer, N. (2017). Brain-computer interface-based communication in the completelet locked-in state. PLOS Biology, 15, e1002593.

    Google Scholar 

  • Chancellor, J. C., Scott, G. B. J., & Sutton, J. P. (2014). Space radiation: The number one risk to astronaut health beyond low Earth orbit. Life, 4, 491–510.

    Google Scholar 

  • Chancellor, J. C., Blue, R. S., Cangel, K. A., Aunon-Chancellor, S. M., Rubins, K. H., Katzgraber, H. G., & Kennedy, A. R. (2018). Limitation in predicting the space radiation health risk for exploration astronauts. npj Microgravity, 4, 8. https://doi.org/10.1038/s41526-018-0043-2.

  • Chien, S., & Wagstaff, K. L. (2017). Robotic space exploration agents. Science Robotics, 2, eaan4831.

    Google Scholar 

  • Clement, G. (2017). International roadmap for artificial gravity research. npj Microgravity 3, 29. https://doi.org/10.1038/s41526-017-0034-8.

  • ClinicalTrials.gov. Retrieved on December 13, 2019 from https://clinicaltrials.gov/ct2/results?cond=&term=CTX001&cntry=&state=&city=&dist=.

  • Collinger, J. L., Wodlinger, B., Downey, J. E., et al. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381, 557–564.

    Google Scholar 

  • Conboy, I., Murthy, N., Etienne, J., & Robinson Z. (2018). Making gene editing a therapeutic reality. F1000 Research, 21(7), pii: F1000 Faculty Rev-1970. https://doi.org/10.12688/f1000research.16106.1. eCollection 2018.

  • Cortes, C., Unzueta, L., de Los Reyes-Guzman, A., Ruiz, O. E., & Florez, J. (2016). Optical enhancement of exoskeleton-based estimation of glenohumeral angles. Applied Bionics and Biomechanics 2016, Article ID 5058171.

    Google Scholar 

  • Cortese, F., Klokov, D., Osipov, A., et al. (2018). Vive la radioresistance!: Converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonisation. Oncotarget, 9. https://doi.org/10.18632/oncotarget.24461.

  • Cucinotta, F. A. (2014). Space radiation risks for astronauts on multiple international space station missions. PLoS ONE, 9, 396099.

    Google Scholar 

  • Cyranoski, D. (2019). The CRISPR-baby scandal: What’s next for human gene editing. Nature, 566, 440–442.

    ADS  Google Scholar 

  • Czeisler, C. A., & Barger, L.K. (2017). Sleep-awake actigraphy and light exposure during spaceflight-long. Retrieved on October 16, 2019 from https://www.nasa.gov/mission_pages/station/research/experiments/294.html.

  • DARPA. Department of Defense Fiscal Year (FY). (2010). Budget Estimates May 2009 Research, Development, Test and Evaluation, Defence-Wide Volume 1—Defense Advanced Research Projects. Agency Exhibit R-2a, PB 2010 Defense Advanced Research Projects Agency RDT&E Project Justification. https://www.darpa.mil/Docs/2010PBDARPAMay2009.pdf.

  • De Lecuona, I., Casado, M., Marfany, G., Baroni, M. L., & Escarrabill, M. (2017). Gene editing in humans: Towards a global and inclusive debate for responsible research. Yale J Biol Med., 90, 673–681.

    Google Scholar 

  • Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J. M., & Brumberg, J.S. (2009a). Silent Speech Interfaces. Speech Communication, 52, 2010.

    Google Scholar 

  • Denby, B., Schultz, T., Honda, K., et al. (2009b). Silent speech interfaces. Speech Communication, 52, 270–287.

    Google Scholar 

  • De Quetteville, H. (2019). This young man died in April. So how did our writer have a conversation with him last month? The Telegraph. Retrieved on February 17, 2019, https://www.telegraph.co.uk/technology/2019/01/18/will-digital-soul/.

  • Ehninger, D., Neff, F., & Xie, K. (2014). Longevity, aging and rapamycin. Cellular and Molecular Life Sciences, 2014, 4325–4346.

    Google Scholar 

  • Ergin, V., Hariry, R. E., & Karasu, C. (2013). Carbonyl stress in aging process: Role of vitamins and phytochemicals as redox regulators. Aging and Disease, 4, 276–294.

    Google Scholar 

  • Ferris, D. P. (2009). The exoskeletons are here. Journal of Neuro Engineering and Rehabilitation, 6, 17.

    Google Scholar 

  • Garcia, M. (2018). International space station facts and figures. Retrieved on October 16, 2019 from https://nasa.gov/feature/facts-and-figures.

  • Gene Therapy Clinical Trials Databases. (2019). Retrieved on December 12, 2019 from https://www.genetherapynet.com/clinical-trials.html.

  • Gene Therapy Medicinal Products. (2019). Federal Institute for Vaccines and Biomedicines, Paul Ehrlich Institut. Retrieved on December 12, 2019 from https://www.pei.de/EN/medicinal-products/atmp/gene-therapy-medicinal-products/gene-therapy-node.html.

  • Ghidini, T. (2018). Regenerative medicine and 3D bioprinting for human space exploration and colonisation. Journal of Thoracic Disease, 10(Suppl 20), S2363–S2375.

    Google Scholar 

  • Gonfalonieri, A. (2018). A beginner’s guide to brain-computer interface and convolutional neural networks. Retrieved on December 9, 2019 from https://towardsdatascience.com/a-beginners-guideto-brain-computer-interface-and-convolutional-neural-networks-9f35bd4af948.

  • Gudkov, A. V., & Komarova, E. A. (2003). The role of p53 in determining sensitivity to radiotherapy. Nature Reviews, 3, 117–129.

    Google Scholar 

  • Gupta, P., Gayen, M., Smith, J. T., et al. (2016). MDP: A Deinococcus Mn2+—Decapeptide complex protects mice from ionizing radiation. PLoS ONE, 11, e0160575.

    Google Scholar 

  • Hanaoka, M., Droma, Y., Basnyat, B., et al. (2012). Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLoS ONE, 7(12), e50566.

    ADS  Google Scholar 

  • Harrison, D., Strong, R., Sharp, Z., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460, 392–395.

    ADS  Google Scholar 

  • Hashimoto, T., Horikawa, D. D., Saito, Y., et al. (2016). Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature Communications, 7, 12808.

    ADS  Google Scholar 

  • Hashimoto T., & Kunieda T. (2017). DNA protection protein, a novel mechanism of radiation tolerance: Lessons from Tardigrades. Life, 7, 26. https://doi.org/10.3390/life7020026.

  • Hill, D., Holloway, C. S., Ramirez, D. Z. M., et al. (2017). What are user perspectives of exoskeleton technology? A literature review. International Journal of Technology Assessment in Health Care, 33, 160–167.

    Google Scholar 

  • Hochberg, L. R., Bacher, D., Jarosiewicz, B., et al. (2012). Reach and grasp control by people with tetraplegia using a neutrally controlled robotic arm. Nature, 485, 372–376.

    ADS  Google Scholar 

  • Howard, H. C., van El, C. G., Forzano, F., et al. (2018). One small edit for humans, one giant edit for humankind? Points and questions to consider for a responsible way forward for gene editing in humans. European Journal of Human Genetics, 26, 1–11.

    Google Scholar 

  • Jackson, B. (2018). ESA lays groundwork for 3D bioprinting bone in space. https://3dprintingindustry.com/news/esa-lays-groundwork-for-3d-bioprinting-bone-in-space-158410/. Retrieved on December 1, 2019.

  • Illardo, M., & Nielsen, R. (2018). Human adaptation to extreme environmental conditions. Current Opinion in Genetics and Development, 53, 77–82.

    Google Scholar 

  • Jebari, K. (2013). Brain machine interface and human enhancement—An ethical review. Neuroethics, 6, 617–625.

    Google Scholar 

  • Kaku, M. (2018). The future of humanity. Terraforming Mars, interstellar travel, immortality and our destiny beyond Earth. Penguin books.

    Google Scholar 

  • Kanas, N. (2010). Expedition to Mars: Psychological, interpersonal and psychiatric issues. Journal of Cosmology, 12, 3741–3747.

    Google Scholar 

  • Kanas, N. (2011). From Earth’s orbit to the outer planets and beyond. Psychological issues in space. Acta Astronautica, 68, 576–581.

    Google Scholar 

  • Kasiotis, K. M., Pratsinis, H., Kletsas, D., & Haroutounian, S. A. (2013). Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food and Chemical Toxicology, 61, 112–120.

    Google Scholar 

  • Konopka, A. R., Laurin, J. L., Schoenberg, H. M., et al. (2019). Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell, 18, e12880.

    Google Scholar 

  • Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., & Michaud, F. (2016). Exoskeletons’ design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disability and Rehabilitation: Assistive Technology, 11, 535–547.

    Google Scholar 

  • Lee, C.-L., Blum, J. M., & Kirsch, D. G. (2013). Prole of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Trends in Cancer Research, 2, 412–421.

    Google Scholar 

  • Li, Q., Xo, X., Zhong, W., et al. (2015). IL-17 induces radiation resistance of B lymphoma cells by suppressing p53 expression and thereby inhibiting irradiation-triggered apoptosis. Cellular and Molecular Immunology, 12, 366–372.

    Google Scholar 

  • Lieben, L. (2016). Regenerative medicine: The future of 3D printing of human tissues is taking shape. Nature Reviews Rheumatology, 12. https://doi.org/10.1038/nrrheum.2016.29.

  • Low, K. H., Liu, X., Goh, C. H., & Yu, H. (2016). Locomotive control of a wearable lower exoskeleton for walking enhancement. Journal of Vibration and Control, 12, 1311–1336.

    Google Scholar 

  • MacInnis, M. J., & Rupert, J. L. (2011). ome on the Range: Altitude adaptation, positive selection, and Himalayan genomics. High Altitude Medical Biology, 133–139.

    Google Scholar 

  • Marilena, G. (2011). Can ageing be slowed? Hormetic and redox perspectives. Journal of Medicine and Life, 4, 346–351.

    Google Scholar 

  • Marshall-Goebel, K., Laurie, S. S., Alferova, I. V., et al. (2019). Assessment of jugular venous flow stasis and thrombosis during spaceflight. Journal of the American Medical Association Open, 2, e1915011.

    Google Scholar 

  • Martin, A., Saathoff, M., Kuhn, F., et al. (2010). A functional ABCC11 allele is essential in the biochemical formation of human axillary odour. Journal of Investigative Dermatology, 130, 529–540.

    Google Scholar 

  • Metformin in Longevity Study (MILES). Retrieved on December 9, 2019 from https://clinicaltrials.gov/ct2/show/NCT02432287.

  • Micera, S. (2017). Restoring multi-joint motor control. Nature Biomedical Engineering, 1, 0073.

    Google Scholar 

  • Momaya, A., Fawal, M., & Estes, R. (2015). Performance-enhancing substances in sports: A review of the literature. Sports Medicine (Auckland, N. Z.), 45, 517–531.

    Google Scholar 

  • Moses, D. A., Leonard, M. K., Makin, J. G., & Chang, E. F. (2019). Real-time decoding of question-and-answer speech dialogue using human cortical activity. Nature Communications, 10, 3096.

    ADS  Google Scholar 

  • Moskalev, A., Chernyagina, E., de Magalhaes, J. P., et al. (2015). Geroprotectors.org: A new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging, 7, 616–628.

    Google Scholar 

  • Nagaraja, M. P., & Risin, D. (2013). The current state of bone loss research: Data from spaceflight and microgravity simulators. Journal of Cellular Biochemistry, 114, 1001–1008.

    Google Scholar 

  • Nelson, M. (2018). Pushing our limits: Insights from Biosphere 2. University of Arizona Press https://doi.org/10.2307/j.ctt1zxsmg9

  • Norwitz, N. G., Moto, A. S., Misra, M., & Ackerman, K. E. (2019). LRP5, bone density, and mechanical stress: A case report and literature review. Frontiers in Endocrinology, 19, Article 184.

    Google Scholar 

  • Novelle, M. G., Ali, A., Diéguez, C., Bernier, B., & de Cabo, R. (2016). Metformin: A hopeful promise in aging research. Cold Spring Harbour Perspectives on Medicine, 6, a025932.

    Google Scholar 

  • Ohman, C., & Floridi, L. (2017). The potential economy of death in the age of information: A critical approach to the digital afterlife industry. Minds and Machines, 27, 639–662.

    Google Scholar 

  • Ohman, C., & Floridi, L. (2018). An ethical framework for the digital afterlife industry. Nature Human Behaviour, 2, 318–320.

    Google Scholar 

  • Pagel, J. I., & Chouker, A. (2016). Effects of isolation and confinement on humans implications for manned space explorations. Journal of Applied Physiology, 120, 1449–1457.

    Google Scholar 

  • Peake, J. M., Kerr, G., & Sullivan, J. P. (2018). A critical review of consumer wearables, mobile applications and equipment for providing biofeedback, monitoring stress and sleep in physically active populations. Frontiers in Physiology, 9, Article 743.

    Google Scholar 

  • Peng, Y., Yang, Z., Zhang, H., et al. (2011). Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Molecular Biology and Evolution, 28, 1075–1081.

    Google Scholar 

  • Pimm S. L., Jenkins C. N., Abell, R., et al. (2014). The biodiversity of species and their rates of extinction, distribution and protection. Science, 344. https://doi.org/10.1126/science.1246752.

  • Prokop-Prigge, K. A., Mansfield, C. J., Parker, M. R., et al. (2015). Ethnic/racial and genetic influences on cerumen odor profiles. Journal of Chemical Ecology, 41, 67–74.

    Google Scholar 

  • Rai, B., & Kaur, J. (2012). Human factor studies on a Mars analogue during crew 100b international lunar exploration working group EuroMoonMars crew: Proposed new approaches for future human space and interplanetary missions. North American Journal of Medical Sciences, 4, 548–557.

    Google Scholar 

  • Rask, J., Vercoutere, W., Navarro, B. J., & Krause, A. (2011). Space fairing: The radiation challenge. Retrieved on October 16, 2019 from https://www.nasa.gov/pdf/284273main_Radiation_HS_Mod1.pdf.

  • Rath, J. (2018). Safety and security risks of CRISPR/Cas9. In D. Schroeder, J. Cook, F. Hirsch, S. Fenet, & V. Muthuswamy (Eds.), Ethics dumping. Springer Briefs in Research and Innovation Governance. Cham: Springer.

    Google Scholar 

  • Rea, R., Beck, C., Rovekamp, R., Diftler, M., & Neuhaus, P. (2013). X1: A robotic exoskeleton for in-space countermeasures and dynamometry. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2013-5510.

    Article  Google Scholar 

  • Rees, M. (2018). On the future prospects for humanity. Princeton University press.

    Google Scholar 

  • Rodriguez, S., Steer, C. D., Farrow, A., Goldring, J., & Day, I. N. M. (2013). Dependence of deodorant usage on ACCC11 genotype: Scope for personalised genetics in personal hygiene. Journal of Investigative Dermatology, 7, 1760–1767.

    Google Scholar 

  • Ryder, P., & Braddock, M. (2020). Harnessing the space environment for the discovery and development of new medicines. In Handbook of space pharmaceuticals. Wiley (in press).

    Google Scholar 

  • Salas, M. A., Bashford, L., Kellis, S., et al. (2018). Proprioceptive and cutaneous sensations in human elicited by intracortical micro-stimulation. eLife, 7, e32904.

    Google Scholar 

  • Sandal, G. M. (2001). Psychosocial issues in space: Future challenges. Gravitational and Space Research, 14, 47–54.

    Google Scholar 

  • Sandal, G. M., van deVijver, F. J. R., & Smith, N. (2018). Psychological hibernation in Antarctica. Frontiers in Psychology, 9, 2235. https://doi.org/10.3389/fpsyg.2018.02235.

    Article  Google Scholar 

  • Schlicker, C., Boanca, G., Lakshminarasimhan, M., & Steegborn, C. (2011). Structure-based development of novel sirtuin inhibitors. Aging (Albany NY), 3, 852–872.

    Google Scholar 

  • Siamwala, J. H., Rajendran, S., & Chatterjee, S. (2015). Strategies of manipulating BMP signalling in microgravity to prevent bone loss. Vitamins & Hormones, 99, 249–272.

    Google Scholar 

  • Sipes, W., & Fielder, E. (2007). Current psychological report for US astronauts on the International Space Station. Retrieved on October 16, 2019 from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070035862.pdf.

  • Scoles, S. (2017). NASA likely to break radiation rules to go to Mars. Retrieved on October 16, 2019 from https://www.pbs.org/wgbh/nona/next/space/nasa-mars-radiation-rule/.

  • Sibonga, J. D., Spector, E. R., Johnston, S. L., & Tarver, W. J. (2015). Evaluating bone loss on ISS astronauts. Aerospace Medicine & Human Performance, 86, A38–A44.

    Google Scholar 

  • Simonson, T. S., Yang, Y., Huff, C. D., et al. (2010). Genetic evidence for high-altitude adaptation in Tibet. Science, 329(5987), 72–75.

    ADS  Google Scholar 

  • Simonson, T. S., McClain, D. A., Jorde, L. B., & Prchal, J. T. (2012). Genetic determinants of Tibetan high-altitude adaptation. Human Genetics, 131(4), 527–533.

    Google Scholar 

  • Sion, N. (2011). Can astronauts survive radiation on prolonged space missions? Bulleting of the Canadian Radiation Protection Association, 31, 20–26.

    Google Scholar 

  • Song, J., Jiang, G., Zhang, J., et al. (2019). Metformin prolongs lifespan through remodelling the energy distribution strategy in silkworm, Bombyx mori. Aging, 11, 240–248.

    Google Scholar 

  • Stingl, J. C., Welker, S., Hartmann, G., Damann, V., & Gerzer, R. (2015). Where failure is not an option—personalised medicine in astronauts. PLoS ONE, 10, e0140764.

    Google Scholar 

  • Svoboda, M. (2019). 12 major climate change reports for 2019. Retrieved on December 13, 2019 from https://www.yaleclimateconnections.org/2019/10/12-major-climate-change-reports-from2019/.

  • Tegmark, M. (2017). Life 3.0. Being human in the age of artificial intelligence. Penguin Press. ISBN 9780141981802.

    Google Scholar 

  • Three dimensional bioprinting in space. https://bioprinting.ru/en/press-center/publications/nasa-organaut/. Retrieved on August 2, 2019.

  • Vaisnav, M., Xing, C., Ku, H.-C., et al. (2014). Genome-wide association analysis of radiation resistance in Drosophila melanogaster. PLoS ONE, 9, e104858.

    ADS  Google Scholar 

  • van Patot, M. C., & Gassmann, M. (2011). Hypoxia: Adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Altitude Medical Biology, 12, 157–167.

    Google Scholar 

  • Weisberger, M. (2019) Lifelike ‘Sophia’ robot granted citizenship to Saudi Arabia. Live Science. Retrieved on February 15, 2019 from https://www.livescience.com/60815-saudi-arabia-citizen-robot.html.

  • White, N. D., & Noeun, J. (2017). Performance-enhancing drug use in adolescence. American Journal of Lifestyle Medicine, 11, 122–124.

    Google Scholar 

  • Williams, T. (2019). Risk of adverse cognitive or behavioral conditions and psychiatric disorders. NASA Human Research Roadmap. Retrieved on January 1, 2020 from https://humanresearchroadmap.nasa.gov/Risks/risk.aspx?i=99.

  • Xu, G.-Y., Qiu, Y., Mao, H.-J. (2014a). Common polymorphism in the LRP5 gene may increase the risk of bone fracture and osteoporosis. BioMed Research International Article ID 290531.

    Google Scholar 

  • Xu, H., Duan, J., Ning, D., et al. (2014b). Role of Wnt signalling in fracture healing. BMB Reports, 47, 666–672.

    Google Scholar 

  • Yagin, N. (1890). Apparatus for Facilitating Walking. U.S. Patent 440,684 filed February 11, 1890 and issued November 18, 1890.

    Google Scholar 

  • Zhang, J., Fiers, P., Witte, K. A., et al. (2017). Human-in-the-loop optimization of exoskeleton assistance during walking. Science, 356, 1280–1284.

    ADS  Google Scholar 

  • Zhou, D., Udpa, N., Ronen, R., et al. (2013). Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. American Journal of Human Genetics, 93, 452–462.

    Google Scholar 

  • Zhou, G., Jiang, H., Yin, Z., Liu, Y., Zhang, Q., et al. (2018). In vitro regeneration of patient-specific ear shaped cartilage and its first clinical application for auricular reconstruction. EBioMedicine, 28, 287–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Braddock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braddock, M. (2020). Limitations for Extraterrestrial Colonisation and Civilisation Built and the Potential for Human Enhancements. In: Szocik, K. (eds) Human Enhancements for Space Missions. Space and Society. Springer, Cham. https://doi.org/10.1007/978-3-030-42036-9_5

Download citation

Publish with us

Policies and ethics