Skip to main content

Ice Formation in Living Organisms

Abstract

This chapter describes the consequences of cold exposure and ice formation on both the cellular, tissue and the organismal level in cold tolerant ectothermic organisms. This includes the direct implication of cold “per se” on various parameters such as pH, membrane fluidity and phase transitions, ionic gradients, metabolism, cold denaturation of proteins, ice nucleation, ice growth, freezing-induced cellular dehydration, the role of aquaporins and the mechanical stress caused by ice, while referring to the different aspects described in the previous chapter on ice in general. Defensive/preventive adaptations and mechanisms of the organisms are described as well, along with a description of freeze tolerance and freeze avoidance. The synthesis and mechanisms of action of low molecular weight cryoprotectants as well as their distribution are discussed. High molecular weight cryoprotectants are also described concluding with the introduction of the AFPs.

Keywords

  • Cold damage
  • Rapid cold hardening
  • Freeze tolerance
  • Freeze avoidance
  • Membranes
  • Cold denaturation
  • Aquaporins
  • Low molecular weight cryoprotectants

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-41929-5_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-41929-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2

References

  • Alejevski F (2012) Seasonal transcription of antifreeze protein genes in larvae of Rhagium mordax and its expression in Drosophila melanogaster. M.Sc. Thesis. Department of Science and Environment, Roskilde University

    Google Scholar 

  • Andersen HD, Wang C, Arleth L, Peters GH, Westh P (2011) Reconciliation of opposing views on membrane-sugar interactions. Proc Natl Acad Sci U S A 108:1874–1878

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Angell CA (1982) Supercooled water. In: Franks F (ed) Water and aqueous solutions at subzero temperatures. Springer, Boston, MA, pp 1–81

    Google Scholar 

  • Angell CA (1983) Supercooled water. Annu Rev Phys Chem 34:593–630

    CAS  CrossRef  Google Scholar 

  • Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci U S A 111:7898–7905

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ansart A, Vernon P (2003) Cold hardiness in molluscs. Acta Oecol 24:95–102

    CrossRef  Google Scholar 

  • Avanti C, Saluja V, van Streun EL, Frijlink HW, Hinrichs WL (2014) Stability of lysozyme in aqueous extremolyte solutions during heat shock and accelerated thermal conditions. PLoS One 9:e86244

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschcke V (2009) Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. J Insect Physiol 55:210–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Bayley JS, Winther CB, Andersen MK, Gronkjaer C, Nielsen OB, Pedersen TH, Overgaard J (2018) Cold exposure causes cell death by depolarization-mediated Ca(2+) overload in a chill-susceptible insect. Proc Natl Acad Sci U S A 115:E9737–E9744

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ben-Naim A (2013) Theory of cold denaturation of proteins. Adv Biol Chem 3:11

    CrossRef  CAS  Google Scholar 

  • Bennett VA, Sformo T, Walters K, Toien O, Jeannet K, Hochstrasser R, Pan Q, Serianni AS, Barnes BM, Duman JG (2005) Comparative overwintering physiology of Alaska and Indiana populations of the beetle Cucujus clavipes (Fabricius): roles of antifreeze proteins, polyols, dehydration and diapause. J Exp Biol 208:4467–4477

    CAS  PubMed  CrossRef  Google Scholar 

  • Berman DI, Meshcheryakova EN, Bulakhova NA (2016) Extreme negative temperatures and body mass loss in the Siberian salamander (Salamandrella keyserlingii, amphibia, hynobiidae). Dokl Biol Sci 468:137–141

    CAS  PubMed  CrossRef  Google Scholar 

  • Bigg EK (1953) The supercooling of water. Proc Phys Soc Sect B 66:688–694

    CrossRef  Google Scholar 

  • Bredow M, Walker VK (2017) Ice-binding proteins in plants. Front Plant Sci 8:2153–2153

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brown DJ, Sönnichsen FD (2002) The structure of fish antifreeze proteins. In: Fish antifreeze proteins, vol 1. World Scientific, River Edge, NJ, pp 109–138

    CrossRef  Google Scholar 

  • Calderon S, Holmstrup M, Westh P, Overgaard J (2009) Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism. J Exp Biol 212:859–866

    CAS  PubMed  CrossRef  Google Scholar 

  • Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77

    CrossRef  Google Scholar 

  • Cheng CC, DeVries AL (1991) The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold-water fish. In: di Prisco G (ed) Life under extreme conditions. Springer, Berlin, pp 1–14

    Google Scholar 

  • Cheng CCM, DeVries AL (2002) Origins and evolution of fish antifreeze proteins. In: Fish antifreeze proteins, vol 1. World Scientific, River Edge, NJ, pp 83–107

    CrossRef  Google Scholar 

  • Clerc SG, Thompson TE (1995) Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys J 68:2333–2341

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M, Brooks S, Postle T, Maclean N (2002) The role of desaturases in cold-induced lipid restructuring. Biochem Soc Trans 30:1082–1086

    CAS  PubMed  CrossRef  Google Scholar 

  • Costanzo JP, Claussen DL (1990) Natural freeze tolerance in the terrestrial turtle, Terrapene carolina. J Exp Zool 254:228–232

    CrossRef  Google Scholar 

  • Costanzo JP, Lee RE Jr (1995) Supercooling and ice nucleation in vertebrate ectotherms. APS Press, St. Paul, pp 221–237

    Google Scholar 

  • Costanzo JP, Lee RE Jr (2013) Avoidance and tolerance of freezing in ectothermic vertebrates. J Exp Biol 216:1961–1967

    PubMed  CrossRef  Google Scholar 

  • Costanzo JP, Wright MF, Lee RE (1992) Freeze tolerance as an overwintering adaptation in Cope’s grey treefrog (Hyla chrysoscelis). J Exp Zool 283(3):221–225

    Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984a) Infrared spectroscopic studies on interactions of water and carbohydrates with a biological membrane. Arch Biochem Biophys 232:400–407

    CAS  PubMed  CrossRef  Google Scholar 

  • Crowe JH, Whittam MA, Chapman D, Crowe LM (1984b) Interactions of phospholipid monolayers with carbohydrates. Biochim Biophys Acta 769:151–159

    CAS  PubMed  CrossRef  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    CAS  PubMed  CrossRef  Google Scholar 

  • Doelling AR, Griffis N, Williams JB (2014) Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis. J Insect Physiol 67:20–27

    CAS  PubMed  CrossRef  Google Scholar 

  • Duman JG (1977) The role of macromolecular antifreeze in the darkling beetle, Meracantha contracta. J Comp Physiol 115:279–286

    CAS  CrossRef  Google Scholar 

  • Duman JG (1980) Factors involved in overwintering survival of the freeze tolerant beetle, Dendroides canadensis. J Comp Physiol 136:52–59

    CrossRef  Google Scholar 

  • Duman JG (1982) Insect antifreezes and ice-nucleating agents. Cryobiology 19:613–627

    CAS  PubMed  CrossRef  Google Scholar 

  • Duman JG (2002) The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. J Comp Physiol B 172:163–168

    CAS  PubMed  CrossRef  Google Scholar 

  • Duman JG, Devries AL (1974) Freezing resistance in winter flounder Pseudopleuronectes americanus. Nature 247:237–238

    CAS  CrossRef  Google Scholar 

  • Duman J, Horwath K (1983) The role of hemolymph proteins in the cold tolerance of insects. Annu Rev Physiol 45:261–270

    CAS  PubMed  CrossRef  Google Scholar 

  • Duman JG, Olsen MT (1993) Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30:322–328

    CrossRef  Google Scholar 

  • Duman JG, Patterson JL, Kozak JJ, DeVries AL (1980) Isopiestic determination of water binding by fish antifreeze glycoproteins. Biochim Biophys Acta 626:332–336

    CAS  PubMed  CrossRef  Google Scholar 

  • Duman JG, Neven LG, Beals JM, Olson KR, Castellino FJ (1985) Freeze-tolerance adaptations, including haemolymph protein and lipoprotein nucleators, in the larvae of the cranefly Tipula trivittata. J Insect Physiol 31:1–8

    CAS  CrossRef  Google Scholar 

  • Duman JG, Wu DW, Xu L, Tursman D, Olsen MT (1991) Adaptations of insects to subzero temperatures. Q Rev Biol 66:387–410

    CrossRef  Google Scholar 

  • Duman JG, Olsen TM, Yeung KL, Jerva F (1995) The roles of ice nucleators in cold tolerant invertebrates. APS Press, St. Paul, pp 201–219

    Google Scholar 

  • Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50:259–266

    CAS  PubMed  CrossRef  Google Scholar 

  • Eastman JT (1993) 11 - Antifreeze Glycopeptides. In: Eastman JT (ed) Antarctic fish biology. Academic Press, San Diego, pp 178–201

    CrossRef  Google Scholar 

  • Elnitsky MA, Lee RE (2009) The rapid cold-hardening response in insects: ecological significance and physiological mechanisms. J Exp Biol 216:3937–3945

    Google Scholar 

  • Finn RN, Cerda J (2015) Evolution and functional diversity of aquaporins. Biol Bull 229:6–23

    CAS  PubMed  CrossRef  Google Scholar 

  • Fisker KV, Overgaard J, Sorensen JG, Slotsbo S, Holmstrup M (2014) Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus. J Comp Physiol B 184:167–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Franks F (1985) Biophysics and biochemistry at low temperatures. Cambridge University Press, Cambridge [Cambridgeshire]

    Google Scholar 

  • Franks F, Mathias SF, Hatley RH (1990) Water, temperature and life. Philos Trans R Soc Lond Ser B Biol Sci 326:517–531. discussion 531–533

    CAS  Google Scholar 

  • Garlick KM, Robertson RM (2007) Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation in Locusta migratoria. Comp Biochem Physiol A Mol Integr Physiol 147:344–348

    PubMed  CrossRef  CAS  Google Scholar 

  • Gehrken U (1984) Winter survival of an adult bark beetle Ips acuminatus Gyll. J Insect Physiol 30:421–429

    CAS  CrossRef  Google Scholar 

  • Gehrken U (1992) Inoculative freezing and thermal hysteresis in the adult beetles Ips acuminatus and Rhagium inquisitor. J Insect Physiol 38:519–524

    CrossRef  Google Scholar 

  • Gehrken U, Strømme A, Lundheim R, Zachariassen KE (1991) Inoculative freezing in overwintering tenebrionid beetle, Bolitophagus reticulatus Panz. J Insect Physiol 37:683–687

    CrossRef  Google Scholar 

  • Gekko K, Timasheff SN (1981a) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20:4667–4676

    CAS  PubMed  CrossRef  Google Scholar 

  • Gekko K, Timasheff SN (1981b) Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry 20:4677–4686

    CAS  PubMed  CrossRef  Google Scholar 

  • Gilbert JA, Davies PL, Laybourn-Parry J (2005) A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. FEMS Microbiol Lett 245:67–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Goldstein DL, Frisbie J, Diller A, Pandey RN, Krane CM (2010) Glycerol uptake by erythrocytes from warm- and cold-acclimated Cope’s gray treefrogs. J Comp Physiol B Biochem Syst Environ Physiol 180:1257–1265

    CAS  CrossRef  Google Scholar 

  • Goto SG, Philip BN, Teets NM, Kawarasaki Y, Lee RE Jr, Denlinger DL (2011) Functional characterization of an aquaporin in the Antarctic midge Belgica antarctica. J Insect Physiol 57:1106–1114

    CAS  PubMed  CrossRef  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    CAS  PubMed  CrossRef  Google Scholar 

  • Griffith M, Ala P, Yang DS, Hon WC, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hartley LM, Packard MJ, Packard GC (2000) Accumulation of lactate by supercooled hatchlings of the painted turtle (Chrysemys picta): implications for overwinter survival. J Comp Physiol B 170:45–50

    CAS  PubMed  CrossRef  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    CAS  PubMed  CrossRef  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    CAS  PubMed  CrossRef  Google Scholar 

  • Hazel JR, McKinley SJ, Williams EE (1992) Thermal adaptation in biological membranes: interacting effects of temperature and pH. J Comp Physiol B 162:593–601

    CAS  CrossRef  Google Scholar 

  • Hoback WW, Stanley DW (2001) Insects in hypoxia. J Insect Physiol 47:533–542

    CAS  PubMed  CrossRef  Google Scholar 

  • Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, New Jersey

    CrossRef  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Oxford University Press, Oxford, New York

    Google Scholar 

  • Holmstrup M (2014) The ins and outs of water dynamics in cold tolerant soil invertebrates. J Therm Biol 45:117–123

    PubMed  CrossRef  Google Scholar 

  • Holmstrup M, Westh P (1994) Dehydration of earthworm cocoons exposed to cold - a novel cold-hardiness mechanism. J Comp Physiol B 164:312–315

    CrossRef  Google Scholar 

  • Holmstrup M, Costanzo JP, Lee RE (1999) Cryoprotective and osmotic responses to cold acclimation and freezing in freeze-tolerant and freeze-intolerant earthworms. J Comp Physiol B 169:207–214

    CrossRef  Google Scholar 

  • Holmstrup M, Bayley M, Ramlov H (2002) Supercool or dehydrate? An experimental analysis of overwintering strategies in small permeable arctic invertebrates. Proc Natl Acad Sci U S A 99:5716–5720

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hoshino T, Kiriaki M, Ohgiya S, Fujiwara M, Kondo H, Nishimiya Y, Yumoto I, Tsuda S (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181

    CAS  CrossRef  Google Scholar 

  • Hub JS, de Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci U S A 105:1198–1203

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Irwin JT, Lee RE (2000) Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). J Insect Physiol 46:655–661

    CAS  PubMed  CrossRef  Google Scholar 

  • Irwin JT, Lee JRE (2003) Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos 100:71–78

    CrossRef  Google Scholar 

  • Izumi Y, Sonoda S, Yoshida H, Danks HV, Tsumuki H (2006) Role of membrane transport of water and glycerol in the freeze tolerance of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). J Insect Physiol 52:215–220

    CAS  PubMed  CrossRef  Google Scholar 

  • Izumi Y, Sonoda S, Tsumuki H (2007) Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. J Insect Physiol 53:685–690

    CAS  PubMed  CrossRef  Google Scholar 

  • Joanisse DR, Storey KB (1996) Oxidative damage and antioxidants in Rana sylvatica, the freeze-tolerant wood frog. Am J Phys 271:R545–R553

    CAS  Google Scholar 

  • Kawarasaki Y, Teets NM, Denlinger DL, Lee RE Jr (2013) The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. J Exp Biol 216:3937–3945

    PubMed  Google Scholar 

  • Kent B, Hunt T, Darwish TA, Hauss T, Garvey CJ, Bryant G (2014) Localization of trehalose in partially hydrated DOPC bilayers: insights into cryoprotective mechanisms. J R Soc Interface 11:20140069

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kikawada T, Saito A, Kanamori Y, Nakahara Y, Iwata K, Tanaka D, Watanabe M, Okuda T (2007) Trehalose transporter 1, a facilitated and high-capacity trehalose transporter, allows exogenous trehalose uptake into cells. Proc Natl Acad Sci U S A 104:11585–11590

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim M, Robich RM, Rinehart JP, Denlinger DL (2006) Upregulation of two actin genes and redistribution of actin during diapause and cold stress in the northern house mosquito, Culex pipiens. J Insect Physiol 52:1226–1233

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • King PA, Rosholt MN, Storey KB (1993) Adaptations of plasma membrane glucose transport facilitate cryoprotectant distribution in freeze-tolerant frogs. Am J Phys 265:R1036–R1042

    CAS  Google Scholar 

  • King PA, Rosholt MN, Storey KB (1995) Seasonal changes in plasma membrane glucose transporters enhance cryoprotectant distribution in the freeze-tolerant wood frog. Can J Zool 73:1–9

    CAS  CrossRef  Google Scholar 

  • Knight CA, Wen D, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    CAS  PubMed  CrossRef  Google Scholar 

  • Kostál V, Tamura M, Borovanska M, Zahradníčková H (2004) Enzymatic capacity for accumulation of polyol cryoprotectants changes during diapause development in the adult red firebug, Pyrrhocoris apterus. Physiol Entomol 29(4):344–355

    CrossRef  Google Scholar 

  • Kristiansen E, Zachariassen KE (2001) Effect of freezing on the transmembrane distribution of ions in freeze-tolerant larvae of the wood fly Xylophagus cinctus (Diptera, Xylophagidae). J Insect Physiol 47:585–592

    CAS  PubMed  CrossRef  Google Scholar 

  • Kristiansen E, Ramlov H, Hojrup P, Pedersen SA, Hagen L, Zachariassen KE (2011) Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochem Mol Biol 41:109–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Kristiansen E, Wilkens C, Vincents B, Friis D, Lorentzen AB, Jenssen H, Lobner-Olesen A, Ramlov H (2012) Hyperactive antifreeze proteins from longhorn beetles: some structural insights. J Insect Physiol 58:1502–1510

    CAS  PubMed  CrossRef  Google Scholar 

  • Krog JO, Zachariassen KE, Larsen B, Smidsrød O (1979) Thermal buffering in afro-alpine plants due to nucleating agent-induced water freezing. Nature 282:300–301

    CrossRef  Google Scholar 

  • Lange R, Staaland H, Mostad A (1972) The effect of salinity and temperature on solubility of oxygen and respiratory rate in oxygen-dependent marine invertebrates. J Exp Mar Biol Ecol 9:217–229

    CAS  CrossRef  Google Scholar 

  • Layne JR Jr, Jones AL (2001) Freeze tolerance in the gray treefrog: cryoprotectant mobilization and organ dehydration. J Exp Zool 290:1–5

    PubMed  CrossRef  Google Scholar 

  • Layne JR Jr, Lee RE Jr (1987) Freeze tolerance and the dynamics of ice formation in wood frogs (Rana sylvatica) from southern Ohio. Can J Zool 65:2062–2065

    CrossRef  Google Scholar 

  • Layne JR Jr, Lee RE Jr (1989) Seasonal variation in freeze tolerance and ice content of the tree frog Hyla versicolor. J Exp Zool 249:133–137

    PubMed  CrossRef  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee RE, Denlinger DL (2010) Rapid cold-hardening: ecological significance and underpinning mechanisms. In: Denlinger DL, Lee JRE (eds) Low temperature biology of insects. Cambridge University Press, Cambridge, pp 35–58

    CrossRef  Google Scholar 

  • Lee RE, Chen C-P, Denlinger DL (1987) A rapid cold-hardening process in insects. Science 238:1415

    PubMed  CrossRef  Google Scholar 

  • Lee RE, McGrath JJ, Todd Morason R, Taddeo RM (1993) Survival of intracellular freezing, lipid coalescence and osmotic fragility in fat body cells of the freeze-tolerant gall fly Eurosta solidaginis. J Insect Physiol 39:445–450

    CAS  CrossRef  Google Scholar 

  • Lee MR, Lee RE Jr, Strong-Gunderson JM, Minges SR (1995) Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. Cryobiology 32:358–365

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee JK, Park KS, Park S, Park H, Song YH, Kang S-H, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222–228

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee RE Jr (2010) A primer on insect cold-tolerance. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Lee RE Jr, Costanzo JP (1998) Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu Rev Physiol 60:55–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee RE Jr, Lewis EA (1985) Effect of temperature and duration of exposure on tissue ice formation in the gall fly Eurosta solidaginis diptera tephritidae. Cryo Letters 6:25–34

    Google Scholar 

  • Lee RE Jr, Elnitsky MA, Rinehart JP, Hayward SAL, Sandro LH, Denlinger DL (2006a) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J Exp Biol 209:399

    PubMed  CrossRef  Google Scholar 

  • Lee RE Jr, Damodaran K, Yi SX, Lorigan GA (2006b) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52:459–463

    CAS  PubMed  CrossRef  Google Scholar 

  • Li N, Andorfer CA, Duman JG (1998) Enhancement of insect antifreeze protein activity by solutes of low molecular mass. J Exp Biol 201:2243–2251

    CAS  PubMed  CrossRef  Google Scholar 

  • Loomis SH (1985) Seasonal changes in the freezing tolerance of the intertidal pulmonate gastropod Melampus bidentatus say. Can J Zool 63:2021–2025

    CrossRef  Google Scholar 

  • Low W-K, Lin Q, Ewart KV, Fletcher GL, Hew CL (2002) The skin-type antifreeze polypeptides: a new class of type I AFPs. In: Fish antifreeze proteins, vol 1. World Scientific, River Edge, NJ, pp 161–186

    CrossRef  Google Scholar 

  • Luzardo MC, Amalfa F, Nunez AM, Diaz S, Biondi De Lopez AC, Disalvo EA (2000) Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J 78:2452–2458

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lytvyak E, Olstad DL, Schopflocher DP, Plotnikoff RC, Storey KE, Nykiforuk CI, Raine KD (2016) Impact of a 3-year multi-centre community-based intervention on risk factors for chronic disease and obesity among free-living adults: the healthy Alberta communities study. BMC Public Health 16:344

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mackenzie AP, Derbyshire W, Reid DS, Richards Rex E, Franks F (1977) Non-equilibrium freezing behaviour of aqueous systems. Philos Trans R Soc Lond B Biol Sci 278:167–189

    CAS  PubMed  CrossRef  Google Scholar 

  • MacMillan HA, Findsen A, Pedersen TH, Overgaard J (2014) Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling. J Exp Biol 217:2930–2938

    PubMed  Google Scholar 

  • Marshall KE, Sinclair BJ (2011) The sub-lethal effects of repeated freezing in the woolly bear caterpillar Pyrrharctia isabella. J Exp Biol 214:1205–1212

    PubMed  CrossRef  Google Scholar 

  • Martino M, Otero L, Sanz P, Zaritzky N (1998) Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Sci 50(3):303–313

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazur P (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355

    CAS  PubMed  CrossRef  Google Scholar 

  • Meier P, Zettel J (1997) Cold hardiness in Entomobrya nivalis (Collembola, Entomobryidae): annual cycle of polyols and antifreeze proteins, and antifreeze triggering by temperature and photoperiod. J Comp Physiol B 167:297–304

    CAS  CrossRef  Google Scholar 

  • Mellanby K, Gardiner JS (1939) Low temperature and insect activity. Proc R Soc L Ser B 127:473–487

    CrossRef  Google Scholar 

  • Meryman HT (1970) The exceeding of a minimum tolerable cell volume in hypertonic suspension as a cause of freezing injury. In: Ciba foundation symposium - the frozen cell. Ciba, Churchill, pp 51–67

    Google Scholar 

  • Mesa ML, Vacchi M (2001) Age and growth of high Antarctic notothenioid fish. Antarct Sci 13:227–235

    CrossRef  Google Scholar 

  • Michaud MR, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE, Denlinger DL (2008) Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J Insect Physiol 54:645–655

    CrossRef  CAS  Google Scholar 

  • Miller LK, Smith JS (1975) Production of threitol and sorbitol by an adult insect: association with freezing tolerance. Nature 258:519–520

    CAS  PubMed  CrossRef  Google Scholar 

  • Miller LK, Werner R (1987) Extreme supercooling as an overwintering strategy in three species of willow gall insects from interior Alaska USA. Oikos 49:253–260

    CrossRef  Google Scholar 

  • Morris GJ, Clarke A (1987) Cells at low temperatures. In: Grout BWW, Morris GJ (eds) The effects of low temperatures on biological systems. Edward Arnold, London, pp 72–119

    Google Scholar 

  • Morrissey RE, Baust JG (1976) The ontogeny of cold tolerance in the gall fly, Eurosta solidagensis. J Insect Physiol 22:431–437

    CAS  CrossRef  Google Scholar 

  • Mugnano J, Lee R, Taylor R (1996) Fat body cells and calcium phosphate spherules induce ice nucleation in the freeze-tolerant larvae of the gall fly Eurosta solidaginis (Diptera, Tephritidae). J Exp Biol 199:465–471

    CAS  PubMed  CrossRef  Google Scholar 

  • Neven LG, Duman JG, Beals JM, Castellino FJ (1986) Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in the winter to promote supercooling. J Comp Physiol B 156:707–716

    CAS  CrossRef  Google Scholar 

  • Newsted JW, Polvi S, Papish B, Kendall E, Saleem M, Koch M, Hussain A, Cutler AJ, Georges F (1994) A low molecular weight peptide from snow mold with epitopic homology to the winter flounder antifreeze protein. Biochem Cell Biol 72:152–156

    CAS  PubMed  CrossRef  Google Scholar 

  • Nickell PK, Sass S, Verleye D, Blumenthal EM, Duman JG (2013) Antifreeze proteins in the primary urine of larvae of the beetle Dendroides canadensis. J Exp Biol 216:1695–1703

    CAS  PubMed  Google Scholar 

  • O’Grady SM, DeVries AL (1982) Osmotic and ionic regulation in polar fishes. J Exp Mar Biol Ecol 57:219–228

    CrossRef  Google Scholar 

  • Olsen TM, Duman JG (1997) Maintenance of the supercooled state in the gut fluid of overwintering pyrochroid beetle larvae, Dendroides canadensis  : role of ice nucleators and antifreeze proteins. J Comp Physiol B 167:114–122

    CrossRef  Google Scholar 

  • Olsen T, Sass S, Li N, Duman J (1998) Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canadensis. J Exp Biol 201(Pt 10):1585–1594

    CAS  PubMed  CrossRef  Google Scholar 

  • Overgaard J, MacMillan HA (2017) The integrative physiology of insect chill tolerance. Annu Rev Physiol 79:187–208

    CAS  PubMed  CrossRef  Google Scholar 

  • Pessin JE, Bell GI (1992) Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu Rev Physiol 54:911–930

    CAS  PubMed  CrossRef  Google Scholar 

  • Philip BN, Kiss AJ, Lee RE Jr (2011) The protective role of aquaporins in the freeze-tolerant insect Eurosta solidaginis: functional characterization and tissue abundance of EsAQP1. J Exp Biol 214:848–857

    CAS  PubMed  CrossRef  Google Scholar 

  • Præbel K, Hunt B, Hunt LH, DeVries AL (2009) The presence and quantification of splenic ice in the McMurdo Sound Notothenioid fish, Pagothenia borchgrevinki (Boulenger, 1902). Comp Biochem Physiol A Mol Integr Physiol 154:564–569

    PubMed  CrossRef  CAS  Google Scholar 

  • Ramlov H (1999) Microclimate and variations in haemolymph composition in the freezing-tolerant New Zealand alpine weta Hemideina maori Hutton (Orthoptera : Stenopelmatidae). J Comp Physiol B 169:224–235

    CrossRef  Google Scholar 

  • Ramlov H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 15(Suppl 5):26–46

    PubMed  CrossRef  Google Scholar 

  • Ramlov H, Westh P (1993) Ice formation in the freeze-tolerant alpine weta Hemideina maori Hutton (Orthoptera, Stenopelmatidae). Cryo-Letters 14:169–176

    Google Scholar 

  • Ramlov H, Bedford J, Leader J (1992) Freezing tolerance of the New-Zealand Alpine weta, Hemideina maori Hutton [Orthoptera, Stenopelmatidae]. J Therm Biol 17:51–54

    CrossRef  Google Scholar 

  • Ramlov H, Wharton DA, Wilson PW (1996) Recrystallization in a freezing tolerant antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera: Stenopelmatidae). Cryobiology 33:607–613

    CAS  PubMed  CrossRef  Google Scholar 

  • Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70

    CAS  PubMed  CrossRef  Google Scholar 

  • Raymond MR, Wharton DA (2016) The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed. J Exp Biol 219:2060–2065

    PubMed  Google Scholar 

  • Raymond JA, Janech MG, Fritsen CH (2009) Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, chlorophyceae)1. J Phycol 45:130–136

    CAS  CrossRef  PubMed  Google Scholar 

  • Rojek A, Praetorius J, Frokiaer J, Nielsen S, Fenton RA (2008) A current view of the mammalian aquaglyceroporins. Annu Rev Physiol 70:301–327

    CAS  PubMed  CrossRef  Google Scholar 

  • Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    CAS  PubMed  CrossRef  Google Scholar 

  • Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids. Arch Biochem Biophys 245:134–143

    CAS  PubMed  CrossRef  Google Scholar 

  • Salt RW (1961) Principles of insect cold-hardiness. Annu Rev Entomol 6:55–74

    CrossRef  Google Scholar 

  • Scholander PF, Flagg W, Hock RJ, Irving L (1953) Studies on the physiology of frozen plants and animals in the Arctic. J Cell Physiol Suppl 42:1–56

    CAS  PubMed  CrossRef  Google Scholar 

  • Semper K (1883) Natural conditions of existence as they affect animal life. Kegan Paul, Trench & CO., London

    Google Scholar 

  • Sformo T, Walters K, Jeannet K, Wowk B, Fahy GM, Barnes BM, Duman JG (2010) Deep supercooling, vitrification and limited survival to −100{degrees}C in the Alaskan beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol 213:502–509

    CAS  PubMed  CrossRef  Google Scholar 

  • Shimada K, Riihimaa A (1988) Cold acclimation, inoculative freezing and slow cooling: essential factors contributing to the freezing-tolerance in diapausing larvae of Chymomyza costata. Drosophilidae, Diptera

    Google Scholar 

  • Sidebottom CM, Smallwood MF, Byass LJ (1999) Frozen product, vol. WO99/37673

    Google Scholar 

  • Sinclair BJ, Klok CJ, Scott MB, Terblanche JS, Chown SL (2003) Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. J Insect Physiol 49:1049–1061

    CAS  PubMed  CrossRef  Google Scholar 

  • Sinclair BJ, Klok CJ, Chown SL (2004) Metabolism of the sub-Antarctic caterpillar Pringleophaga marioni during cooling, freezing and thawing. J Exp Biol 207:1287–1294

    PubMed  CrossRef  Google Scholar 

  • Sinclair BJ, Gibbs AG, Lee WK, Rajamohan A, Roberts SP, Socha JJ (2009) Synchrotron x-ray visualisation of ice formation in insects during lethal and non-lethal freezing. PLoS One 4(12):e8259

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Sømme L (1982) Supercooling and winter survival in terrestrial arthropods. Comp Biochem Physiol A Mol Integr Physiol 73:519–543

    CrossRef  Google Scholar 

  • Sømme L, Zachariassen KE (1981) Adaptations to low temperature in high altitude insects from Mount Kenya. Ecol Entomol 6:199–204

    CrossRef  Google Scholar 

  • Storey KB (2004) Strategies for exploration of freeze responsive gene expression: advances in vertebrate freeze tolerance. Cryobiology 48:134–145

    CAS  PubMed  CrossRef  Google Scholar 

  • Storey JM, Storey KB (1985) Freezing and cellular metabolism in the gall fly larva, Eurosta solidaginis. J Comp Physiol B 155:333–337

    CAS  CrossRef  Google Scholar 

  • Storey KB, Storey JM (1988) Freeze tolerance in animals. Physiol Rev 68:27–84

    CAS  PubMed  CrossRef  Google Scholar 

  • Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Annu Rev Physiol 54:619–637

    CAS  PubMed  CrossRef  Google Scholar 

  • Storey KB, Storey JM (1993) Cellular adaptations for freezing survival of amphibians and reptiles, vol 2. JAI Press, London, pp 101–129

    Google Scholar 

  • Storey KB, Storey JM (1996) Natural freezing survival in animals. Annu Rev Ecol Syst 27:365–386

    CrossRef  Google Scholar 

  • Storey KB, Storey JM (2013) Molecular biology of freezing tolerance. Compr Physiol 3:1283–1308

    PubMed  CrossRef  Google Scholar 

  • Tantos A, Friedrich P, Tompa P (2009) Cold stability of intrinsically disordered proteins. FEBS Lett 583:465–469

    CAS  PubMed  CrossRef  Google Scholar 

  • Taylor MJ (1987) Physico-chemical principles in low temperature biology. In: Grout BWW, Morris GJ (eds) The effects of low temperatures on biological systems. Edmond Arnold, London, pp 3–71

    Google Scholar 

  • Teets NM, Denlinger DL (2013) Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol Entomol 38:105–116

    CAS  CrossRef  Google Scholar 

  • Teets NM, Kawarasaki Y, Lee RE Jr, Denlinger DL (2011) Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae. J Exp Biol 214:806–814

    CAS  PubMed  CrossRef  Google Scholar 

  • Teets NM, Yi SX, Lee RE Jr, Denlinger DL (2013) Calcium signaling mediates cold sensing in insect tissues. Proc Natl Acad Sci U S A 110:9154–9159

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Toxopeus J, Sinclair BJ (2018) Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc 93:1891–1914

    PubMed  CrossRef  Google Scholar 

  • Tsumuki H (2000) Review of low temperature tolerance and ice nuclei in insects, with special emphasis on larvae of the rice stem borer, Chilo suppressalis Walker. Jpn J Appl Entomol Zool 44(3):149–154

    CAS  CrossRef  Google Scholar 

  • Tsumuki H, Konno H (1991) Tissue distribution of the ice-nucleating agents in larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Cryobiology 28(4):376–381

    CrossRef  Google Scholar 

  • Turner JD, Schrag JD, Devries AL (1985) Ocular freezing avoidance in antarctic fish. J Exp Biol 118:121

    CrossRef  Google Scholar 

  • Tursman D, Duman JG (1995) Cryoprotective effects of thermal hysteresis protein on survivorship of frozen gut cells from the freeze-tolerant centipede Lithobius forficatus. J Exp Zool 272(4):249–257

    CAS  CrossRef  Google Scholar 

  • Vali G (1995) Principles of ice nucleation. APS Press, St. Paul, pp 1–28

    Google Scholar 

  • van der Laak S (1982) Physiological adaptations to low temperature in freezing-tolerant Phyllodecta laticollis beetles. Comp Biochem Physiol A Physiol 73:613–620

    CrossRef  Google Scholar 

  • Voituron Y, Paaschburg L, Holmstrup M, Barre H, Ramlov H (2009) Survival and metabolism of Rana arvalis during freezing. J Comp Physiol B 179:223–230

    CAS  PubMed  CrossRef  Google Scholar 

  • Waagner D, Bouvrais H, Ipsen JH, Holmstrup M (2013) Linking membrane physical properties and low temperature tolerance in arthropods. Cryobiology 67:383–385

    PubMed  CrossRef  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104:467

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387

    CAS  PubMed  CrossRef  Google Scholar 

  • Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramlov H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207

    CAS  PubMed  CrossRef  Google Scholar 

  • Wharton DA, Pow B, Kristensen M, Ramlov H, Marshall CJ (2009) ICE-active proteins and cryoprotectants from the New Zealand alpine cockroach, Celatoblatta quinquemaculata. J Insect Physiol 55:27–31

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilkens C, Ramlov H (2008) Seasonal variations in antifreeze protein activity and haemolymph osmolality in larvae of the beetle Rhagium mordax (Coleoptera : Cerambycidae). CryoLetters 29:293–300

    CAS  PubMed  Google Scholar 

  • Wilson PW, Leader JP (1995) Stabilization of supercooled fluids by thermal hysteresis proteins. Biophys J 68:2098–2107

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wilson P, Ramlov H (1995) Hemolymph ice nucleating proteins from the New-Zealand alpine Weta Hemideina maori (Orthoptera, Stenopelmatidae). Comp Biochem Physiol B 112:535–542

    CrossRef  Google Scholar 

  • Wilson PW, Heneghan AF, Haymet AD (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98

    CAS  CrossRef  PubMed  Google Scholar 

  • Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–524

    CrossRef  Google Scholar 

  • Worland MR, Block WI, Grubor-Lajsic G (2000) Survival of Heleomyza borealis (Diptera, Heleomyzidae) larvae down to −  60°C. Physiol Entomol 25:1–5

    CrossRef  Google Scholar 

  • Worland MR, Wharton DA, Byars SG (2004) Intracellular freezing and survival in the freeze tolerant alpine cockroach Celatoblatta quinquemaculata. J Insect Physiol 50:225–232

    CAS  PubMed  CrossRef  Google Scholar 

  • Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotechnol Biochem 66:239–247

    CAS  PubMed  CrossRef  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  PubMed  CrossRef  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    CAS  PubMed  CrossRef  Google Scholar 

  • Yi SX, Lee RE Jr (2003) Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J Insect Physiol 49:999–1004

    CAS  PubMed  CrossRef  Google Scholar 

  • Zachariassen KE (1973) Seasonal variation in hemolymph osmolality and osmotic contribution of glycerol in adult Rhagium inquisitor L. (Col., Cerambycidae). Cryo Letters 29(4):293–300

    Google Scholar 

  • Zachariassen KE (1979) The mechanism of the cryoprotective effect of glycerol in beetles tolerant to freezing. J Insect Physiol 25:29–32

    CAS  CrossRef  Google Scholar 

  • Zachariassen KE (1985) Physiology of cold tolerance in insects. Physiol Rev 65:799–832

    CAS  PubMed  CrossRef  Google Scholar 

  • Zachariassen KE, Hammel HT (1976) Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287

    CAS  PubMed  CrossRef  Google Scholar 

  • Zachariassen KE, Husby JA (1982) Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867

    CrossRef  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279

    CAS  PubMed  CrossRef  Google Scholar 

  • Zachariassen KE, Kristiansen E, Pedersen SA, Hammel HT (2004) Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous? Cryobiology 48:309–321

    PubMed  CrossRef  Google Scholar 

  • Zachariassen KE, Li NG, Laugsand AE, Kristiansen E, Pedersen SA (2008) Is the strategy for cold hardiness in insects determined by their water balance? A study on two closely related families of beetles: Cerambycidae and Chrysomelidae. J Comp Physiol B 178:977–984

    CAS  PubMed  CrossRef  Google Scholar 

  • Zimmerman SL, Frisbie J, Goldstein DL, West J, Rivera K, Krane CM (2007) Excretion and conservation of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope’s gray tree frog Hyla chrysoscelis. Am J Physiol Regul Integr Comp Physiol 292:R544–R555

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ramløv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ramløv, H., Friis, D.S. (2020). Ice Formation in Living Organisms. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41929-5_4

Download citation