Skip to main content

Clustering a 2d Pareto Front: P-center Problems Are Solvable in Polynomial Time

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2020)

Abstract

Having many non dominated solutions in bi-objective optimization problems, this paper aims to cluster the Pareto front using Euclidean distances. The p-center problems, both in the discrete and continuous versions, become solvable with a dynamic programming algorithm. Having N points, the complexity of clustering is \(O(KN\log N)\) (resp. \(O(KN\log ^2 N)\)) time and O(N) memory space for the continuous (resp. discrete) K-center problem for \(K\geqslant 3\), and in \(O(N\log N)\) time for such 2-center problems. Furthermore, parallel implementations allow quasi-linear speed-up for the practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, P., Sharir, M., Welzl, E.: The discrete 2-center problem. Discret. Comput. Geom. 20(3), 287–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences. In: Proceedings of GECCO 2009, pp. 563–570. ACM (2009)

    Google Scholar 

  3. Brass, P., Knauer, C., Na, H., Shin, C., Vigneron, A.: Computing k-centers on a line. arXiv preprint arXiv:0902.3282 (2009)

  4. Bringmann, K., Cabello, S., Emmerich, M.: Maximum volume subset selection for anchored boxes. arXiv preprint arXiv:1803.00849 (2018)

  5. Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for hypervolume and epsilon-indicator. In: Annual Conference on Genetic and Evolutionary Computation, pp. 589–596. ACM (2014)

    Google Scholar 

  6. Calik, H., Tansel, B.: Double bound method for solving the p-center location problem. Comput. Oper. Res. 40(12), 2991–2999 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drezner, Z.: The p-centre problem - heuristic and optimal algorithms. J. Oper. Res. Soc. 35(8), 741–748 (1984)

    MATH  Google Scholar 

  8. Dupin, N., Nielsen, F., Talbi, E.: Dynamic programming heuristic for k-means clustering among a 2-dimensional pareto frontier. In: 7th International Conference on Metaheuristics and Nature Inspired Computing, pp. 1–8 (2018)

    Google Scholar 

  9. Dupin, N., Nielsen, F., Talbi, E.-G.: K-medoids clustering is solvable in polynomial time for a 2d pareto front. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp. 790–799. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_79

    Chapter  Google Scholar 

  10. Dupin, N., Talbi, E.: Clustering in a 2-dimensional pareto front: p-median and p-center are solvable in polynomial time. arXiv preprint arXiv:1806.02098 (2018)

  11. Elloumi, S., Labbé, M., Pochet, Y.: A new formulation and resolution method for the p-center problem. INFORMS J. Comput. 16(1), 84–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fowler, R., Paterson, M., Tanimoto, S.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grønlund, A., et al.: Fast exact k-means, k-medians and Bregman divergence clustering in 1d. arXiv preprint arXiv:1701.07204 (2017)

  14. Hsu, W., Nemhauser, G.: Easy and hard bottleneck location problems. Discret. Appl. Math. 1(3), 209–215 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hwang, R., Lee, R., Chang, R.: The slab dividing approach to solve the Euclidean P-center problem. Algorithmica 9(1), 1–22 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karmakar, A., et al.: Some variations on constrained minimum enclosing circle problem. J. Comb. Optim. 25(2), 176–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuhn, T., et al.: Hypervolume subset selection in two dimensions: formulations and algorithms. Evol. Comput. 24(3), 411–425 (2016)

    Article  Google Scholar 

  18. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. Theoret. Comput. Sci. 442, 13–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related problems. SIAM J. Comput. 12(4), 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Megiddo, N., Supowit, K.: On the complexity of some common geometric location problems. SIAM J. Comput. 13(1), 182–196 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Megiddo, N., Tamir, A.: New results on the complexity of p-centre problems. SIAM J. Comput. 12(4), 751–758 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sayın, S.: Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math. Prog. 87(3), 543–560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharir, M.: A near-linear algorithm for the planar 2-center problem. Discret. Comput. Geom. 18(2), 125–134 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Talbi, E.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  25. Wang, H., Song, M.: Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic programming. R J. 3(2), 29 (2011)

    Article  Google Scholar 

  26. Zio, E., Bazzo, R.: A clustering procedure for reducing the number of representative solutions in the pareto front of multiobjective optimization problems. Eur. J. Oper. Res. 210(3), 624–634 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dupin .

Editor information

Editors and Affiliations

Appendix A: Proof of the Lemmas 2 and 4

Appendix A: Proof of the Lemmas 2 and 4

Proof of Lemma 2: \(\forall k \in [\![i,i']\!], \; {\parallel } x_j - x_k {\parallel } \leqslant \max \left( {\parallel }x_j - x_i {\parallel },{\parallel } x_j - x_i {\parallel }\right) \), using Proposition 1. Then:

\( f_{ctr}^{{\mathcal {D}}}(P) = \min _{j \in [\![i,i']\!], x_j \in P} \max \big ( \max \left( {\parallel }x_j - x_i {\parallel },{\parallel }x_j - x_i {\parallel } \right) , \max _{ k \in [\![i,i']\!]} {\parallel }x_j - x_k {\parallel } \big ) \)

\( f_{ctr}^{{\mathcal {D}}}(P) = \min _{j \in [\![i,i']\!], x_j \in P} \max \left( {\parallel }x_j - x_i {\parallel }, {\parallel } x_j - x_{i'} {\parallel } \right) \). It proves (16). We prove now a stronger result than (15): the application \(x \in {\mathbb {R}}^2 \longmapsto \max _{p \in P} {\parallel }x - p {\parallel } \in {\mathbb {R}}\) as a unique minimum reached for \(x = \frac{x_i + x_j}{2}\):

\(\displaystyle \forall x \in {\mathbb {R}}^2-\left\{ \frac{x_i + x_j}{2}\right\} , \, \max _{p \in P} {\parallel }x - p{\parallel } > \frac{1}{2} {\parallel } x_i - x_j {\parallel } = \max _{p \in P} {\parallel }\frac{x_i + x_j}{2} - p {\parallel } (19)\)

We prove (19) analytically, denoting \(\text{ diam }(P) = \frac{1}{2} {\parallel }x_i - x_j {\parallel }\). We firstly use the coordinates defining as origin the point \(O = \frac{x_i + x_j}{2}\) and that \(x_i = (- \frac{1}{2} \text{ diam }(P),0)\) and \(x_j = ( \frac{1}{2} \text{ diam }(P),0)\). Let x a point in \({\mathbb {R}}^2\) and \((x_1,x_2)\) its coordinates. We minimize \(\max _{p \in P} d(x,x_p)\) distinguishing the cases:

if \(x_1>0\), \(d(x,x_i)^2 = (x_1 + \frac{1}{2} \text{ diam }(P))^2 +x_2^2 \geqslant (x_1 + \frac{1}{2} \text{ diam }(P))^2 > (\frac{1}{2} \text{ diam }(P))^2\)

if \(x_1<0\), \(d(x,x_j)^2 = (x_1 - \frac{1}{2} \text{ diam }(P))^2 +x_2^2 \geqslant (x_1 - \frac{1}{2} \text{ diam }(P))^2 > (\frac{1}{2} \text{ diam }(P))^2\)

if \(x_1=0\) and \(x_2 \ne 0\), \(d(x,x_i)^2 = (\frac{1}{2} \text{ diam }(P))^2 +x_2^2 > (\frac{1}{2} \text{ diam }(P))^2\)

In these three sub-cases, \(\max _{p \in P} d(x,x_p) \geqslant d(x,x_i) >\frac{1}{2} \text{ diam }(P)\). The three cases allow to reach any point of \({\mathbb {R}}^2\) except \(x_0 = \frac{x_i + x_j}{2}\). To prove the last equality, we use the coordinates such that \(x_i = (- \frac{1}{2} \text{ diam }(P);0)\) and \(x_j = ( \frac{1}{2} \text{ diam }(P);0)\). The origin \(x_0\) has coordinates \((\frac{1}{2 \sqrt{2}} \text{ diam }(P), \frac{1}{2 \sqrt{2}} \text{ diam }(P))\). Let \(x=(x^1,x^2) \in P\), such that \(x\ne x_i, x_j\). Thus \( x_i \prec x \prec x_j\). The Pareto dominance induces \(0 \leqslant x_1,x_2\leqslant \frac{1}{\sqrt{2}} \text{ diam }(P)\). \(d(x,x_0)^2= (x_1 - \frac{1}{2 \sqrt{2}} \text{ diam }(P))^2 + (x_2 - \frac{1}{2 \sqrt{2}} \text{ diam }(P))^2\)

\(d(x,x_0)^2 \leqslant (\frac{1}{2 \sqrt{2}} \text{ diam }(P))^2 + (\frac{1}{2 \sqrt{2}} \text{ diam }(P))^2 = 2 \frac{1}{8} \text{ diam }(P))^2\)

\(d(x,x_0) \leqslant \frac{1}{2} \text{ diam }(P)\), which proves (19) as \(d(x_0,x_i) = d(x_0,x_j) = \frac{1}{2} \text{ diam }(P)\). \(\square \)

Proof of Lemma 4: Let \(i<i'\). We define \(g_{i,i',j}, h_{i,i',j}\) with:

\(g_{i,i'} :j \in [\![i,i']\!] \longmapsto {\parallel } x_j - x_i {\parallel }\) and \(h_{i,i'} :j \in [\![i,i']\!] \longmapsto {\parallel } x_j - x_{i'} {\parallel }\)

Using Proposition 1, g is strictly decreasing and h is strictly increasing.

Let \(A=\{j \in [\![i,i']\!] | \forall m \in [\![i,j]\!] g_{i,i'}(m) < h_{i,i'}(m) \}\). \(g_{i,i'}(i) = 0\) and \(h_{i,i'}(i) = {\parallel } x_{i'} - x_i {\parallel }>0\) so that \(i \in A\), \(A\ne \emptyset \). We note \(l=\max A\). \(h_{i,i'}(i') = 0\) and \(g_{i,i'}(i') = {\parallel }x_{i'} - x_i {\parallel }>0\) so that \(i' \notin A\) and \(l<i'\). Let \(j \in [\![i,l-1]\!]\). \(g_{i,i'}(j) < g_{i,i'}(j+1)\) and \(h_{i,i',j}(j+1) < h_{i,i'}(j)\). \(f_{i,i'}(j+1)= \max \left( g_{i,i'}(j+1),h_{i,i'}(j+1)\right) = h_{i,i}(j+1)\) and \(f_{i,i'}(j)= \max (g_{i,i'}(j),h_{i,i'}(j)) = h_{i,i}(j)\) as \(j,j+1 \in A\). Hence, \(f_{i,i'}(j+1)= h_{i,i'}(j+1) < h_{i,i'}(j) = f_{i,i'}(j)\). It proves that \(f_{i,i'}\) is strictly decreasing in \([\![i,l]\!]\). \(l+1 \notin A\) and \(g_{i,i'}(l+1) > h_{i,i'}(l+1)\) to be coherent with \(l=\max A\). Let \(j \in [\![l+1,i'-1]\!]\). \(j+1 > j \geqslant l+1\) so \(g_{i,i'}(j+1)> g_{i,i'}(j) \geqslant g_{i,i'}(l+1)> h_{i,i'}(l+1) \geqslant h_{i,i'}(j) > h_{i,i'}(j+1)\). It implies \(f_{i,i'}(j+1)= g_{i,i'}(j+1)\) and \(f_{i,i'}(j)= g_{i,i'}(j)\) and \(f_{i,i'}(j+1) < f_{i,i'}(j)\). \(g_{i,i'}(j) < g_{i,i'}(j+1)\) and \(h_{i,i',j}(j+1) < h_{i,i'}(j)\). \(f_{i,i'}(j+1)= \max (g_{i,i'}(j+1),h_{i,i'}(j+1)) = g_{i,i}(j+1)\) and \(f_{i,i'}(j)= \max (g_{i,i'}(j),h_{i,i'}(j)) = h_{i,i}(j)\) as \(j,j+1 \in A\). Hence, \(f_{i,i'}(j+1)= h_{i,i'}(j+1) > h_{i,i'}(j) = f_{i,i'}(j)\), \(f_{i,i'}\) is strictly increasing in \([\![l+1,i']\!]\). \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dupin, N., Nielsen, F., Talbi, EG. (2020). Clustering a 2d Pareto Front: P-center Problems Are Solvable in Polynomial Time. In: Dorronsoro, B., Ruiz, P., de la Torre, J., Urda, D., Talbi, EG. (eds) Optimization and Learning. OLA 2020. Communications in Computer and Information Science, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-030-41913-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41913-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41912-7

  • Online ISBN: 978-3-030-41913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics