Skip to main content

The Somatosensory System

Abstract

The somatosensory system has by far the largest number of receptor types of any of the primate sensory systems, including mechanoreceptors, chemoreceptors, nociceptors and thermoreceptors. The sensation of touch is mainly mediated by mechanoreceptors, but there are a number of other processing channels within the somatosensory system for proprioception, pain and temperature. The classic view of two independent channels for somatosensory information from the trunk and the extremities, i.e. the dorsal column-medial lemniscus system for tactile sensitivity and position sense and the anterolateral or spinothalamic system for pain and temperature sensitivity, has been modified through the discovery of additional spinal pathways for the transmission of sensory impulses to the brain and by new views on pain mechanisms. Somatosensory information from the face is transmitted via the trigeminal nerve.

In this chapter, Mountcastle’s subdivision into large- and small-fibred systems is used. The large-fibred somatic afferent system deals with the discriminatory-sensory aspects of somaesthesis and the small-fibred system with the affective-vegetative components of the perceptions evoked by all but the blandest of somatic stimuli. The discriminative-sensory systems include those of the dorsal and dorsolateral columns and the trigeminal lemniscal system that deal with the mechanoreceptive aspects of somaesthesis. The affective-vegetative systems convey somatosensory information from all the spinal columns, especially from the ventral quadrants, and from the spinal trigeminothalamic tract. Functional, anatomical and imaging data suggest that pain impulses are conveyed by specific sensory channels or labelled lines that ascend in a central homeostatic afferent pathway and have specific thalamic and cortical targets. After a brief description of receptors and peripheral pathways (Sect. 4.2), the following somatosensory systems are discussed: (1) the large-fibred dorsal column-medial lemniscus system and sensory pathways in the dorsolateral funiculus (Sect. 4.3), (2) the small-fibred sensory pathways in the ventral quadrant of the spinal cord (the anterolateral or pain system; Sect. 4.4) and (3) the trigeminal somatosensory system (Fig. 4.5). For each of these systems, Clinical Cases illustrate where and how the somatosensory circuitry may be damaged. The English terms of the Terminologia Neuroanatomica are used throughout.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-41878-6_4
  • Chapter length: 85 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-41878-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22
Fig. 4.23
Fig. 4.24
Fig. 4.25
Fig. 4.26
Fig. 4.27
Fig. 4.28
Fig. 4.29
Fig. 4.30
Fig. 4.31
Fig. 4.32
Fig. 4.33
Fig. 4.34
Fig. 4.35
Fig. 4.36
Fig. 4.37
Fig. 4.38
Fig. 4.39
Fig. 4.40
Fig. 4.41
Fig. 4.42
Fig. 4.43
Fig. 4.44
Fig. 4.45
Fig. 4.46
Fig. 4.47
Fig. 4.48
Fig. 4.49
Fig. 4.50
Fig. 4.51

References

  • Aglioti S, Beltramello A, Bonazzi A, Corbetta M (1996) Thumb-pointing in human after damage to somatic sensory cortex. Exp Brain Res 109:92–100

    CAS  PubMed  CrossRef  Google Scholar 

  • Al-Chaer ED, Lawand NB, Westlund KN, Willis WD (1996a) Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J Neurophysiol 76:2661–2674

    CAS  PubMed  CrossRef  Google Scholar 

  • Al-Chaer ED, Lawand NB, Westlund KN, Willis WD (1996b) Pelvic visceral input into the nucleus gracilis is largely mediated by the postsynaptic dorsal column pathway. J Neurophysiol 76:2675–2690

    CAS  PubMed  CrossRef  Google Scholar 

  • Al-Chaer ED, Westlund KN, Willis WD (1997) Nucleus gracilis: an integrator for visceral and somatic sensations. J Neurophysiol 78:521–527

    CAS  PubMed  CrossRef  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Parcey TM, Spenar DP, Williamson PP (1989a) Human cortical potentials evoked by stimulation of median nerves. I. Cytoarchitectonic areas generating S1 activity. J Neurophysiol 62:694–710

    CAS  PubMed  CrossRef  Google Scholar 

  • Allison T, McCarthy G, Wood CC, Williamson PD, Spencer DD (1989b) Ibid. II. Cytoarchitectonic areas generating long-latency activity. J Neurophysiol 62:711–722

    CAS  PubMed  CrossRef  Google Scholar 

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    CAS  PubMed  CrossRef  Google Scholar 

  • Andres KH, von Düring M (1973) Morphology of cutaneous receptors. In: Iggo A (ed) Handbook of sensory physiology, Somatosensory system, vol 2. Springer, Berlin-Heidelberg-New York, pp 3–28

    Google Scholar 

  • Apkarian AV, Hodge CJ (1989a) Primate spinothalamic pathways. II. The cells of origin of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288:474–492

    CAS  PubMed  CrossRef  Google Scholar 

  • Apkarian AV, Hodge CJ (1989b) Ibid. III. Thalamic terminations of the dorsolateral and ventrolateral spinothalamic pathways. J Comp Neurol 288:493–511

    CAS  PubMed  CrossRef  Google Scholar 

  • Apkarian AV, Shi T (1994) Squirrel monkey lateral thalamus. I. Somatic nociresponsive neurons and their relation to spinothalamic terminals. J Neurosci 14:6779–6796

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Appenzeller O (1976) The autonomic nervous system: an introduction to basic and clinical concepts, 2nd edn. North-Holland, Amsterdam-Oxford

    Google Scholar 

  • Arvidsson J, Gobel S (1981) An HRP study of the central projections of primary trigeminal neurons which innervate tooth pulps in the cat. Brain Res 210:1–16

    CAS  PubMed  CrossRef  Google Scholar 

  • Badr GG, Hanner P, Edstrom S (1983) Cortical evoked potentials in response to trigeminal nerve stimulation in humans. Clin Electroencephalogr 14:61–66

    CAS  PubMed  CrossRef  Google Scholar 

  • Bannister LH (1976) Sensory terminals of peripheral nerves. In: Landon DN (ed) The peripheral nerve. Wiley, New York, pp 396–403

    Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    CAS  PubMed  CrossRef  Google Scholar 

  • Battaglia-Mayer A, Caminiti R, Lacquaniti F, Zago M (2003) Multiple levels of representation of reaching in the parieto-frontal network. Cereb Cortex 13:1009–1022

    PubMed  CrossRef  Google Scholar 

  • Bennett MH, Jannetta PJ (1980) Trigeminal evoked potentials in humans. Electroencephalogr Clin Neurophysiol 48:517–526

    CAS  PubMed  CrossRef  Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. J Comp Neurol 193:283–317

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernard JF, Peschanski M, Besson JM (1989) Afferents and efferents of the rat cuneiform nucleus: an anatomical study with reference to pain transmission. Brain Res 490:181–185

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329:201–229

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernard JF, Huang GF, Besson JM (1994) The parabrachial area: electrophysiological evidence for an involvement in visceral nociceptive processes. J Neurophysiol 71:1646–1660

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernard JF, Bester H, Besson JM (1996) Involvement of the spino-parabrachio-amygdaloid and –hypothalamic pathways in the autonomic and affective emotional aspects of pain. Prog Brain Res 107:243–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24:41–49

    CAS  PubMed  CrossRef  Google Scholar 

  • Biemond A (1956) The conduction of pain above the level of the thalamus opticus. Arch Neurol Psychiatr 75:231–244

    CAS  CrossRef  Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund H-J (1998) Human anterior intraparietal area subserves prehension. Neurology 50:1253–1259

    CAS  PubMed  CrossRef  Google Scholar 

  • Binkofski F, Kunesch F, Classen J, Seitz RJ, Freund H-J (2001) Tactile apraxia: unilateral apractic disorder of tactile object exploration associated with parietal lobe lesions. Brain 124:132–144

    CAS  PubMed  CrossRef  Google Scholar 

  • Bittar RG, Olivier A, Sadikot AF, Andermann F, Comeau RM, Cyr M et al (1999) Localization of somatosensory function by using positron emission tomography scanning: a comparison with intraoperative cortical stimulation. J Neurosurg 90:478–483

    CAS  PubMed  CrossRef  Google Scholar 

  • Blomqvist A, Zhang ET, Craig AD (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123:601–619

    PubMed  CrossRef  Google Scholar 

  • Bogousslavsky J, Regli F, Uske A (1988) Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 38:837–848

    CAS  PubMed  CrossRef  Google Scholar 

  • Boivie J (1983) Anatomic and physiological features of the spino-cervico-thalamic pathways. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the thalamus. Elsevier, Amsterdam, pp 63–106

    Google Scholar 

  • Boivie J (1999) Central pain. In: Wall PD, Melzack R (eds) Textbook of pain, 3rd edn. Churchill Livingstone, Edinburgh, pp 879–914

    Google Scholar 

  • Boivie J, Boman K (1981) Termination of a separate (proprioceptive?) cuneothalamic tract from external cuneate nucleus in monkey. Brain Res 224:235–246

    CAS  PubMed  CrossRef  Google Scholar 

  • Boivie J, Myerson BA (1982) A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 13:113–126

    CAS  PubMed  CrossRef  Google Scholar 

  • Boivie J, Leijon G, Johansson I (1989) Central poststroke pain – a study of the mechanisms through analyses of the sensory abnormalities. Pain 37:173–185

    CAS  PubMed  CrossRef  Google Scholar 

  • Bolanowski SJ, Gescheider GA, Verrillo RT, Checkosky CM (1988) Four channels mediate the mechanical aspects of touch. J Acoust Soc Am 84:1680–1694

    PubMed  CrossRef  Google Scholar 

  • Bolanowski SJ, Gescheider GA, Verrillo RT (1994) Hairy skin: psychophysical channels and their physiological substrates. Somatosens Motor Res 11:1279–1290

    Google Scholar 

  • Boling WW, Olivier A (2004) Localization of hand sensory function to the pli de passage moyen of Broca. J Neurosurg 101:278–283

    PubMed  CrossRef  Google Scholar 

  • Bowsher D (1957) Termination of the central pain pathway in man: the conscious appreciation of pain. Brain 80:606–622

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowsher D (1996) Central pain: clinical and physiological characteristics. J Neurol Neurosurg Psychiatry 61:62–69

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bowsher D (1997) Trigeminal neuralgia: an anatomically oriented review. Clin Anat 10:409–415

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowsher D (2005) Representation of somatosensory modalities in pathways ascending from the spinal anterolateral funiculus to the thalamus demonstrated by lesions in man. Eur Neurol 54:14–22

    PubMed  CrossRef  Google Scholar 

  • Bowsher D (2006) Somatic sensation and the insular-opercular cortex: relationship to central pain. Eur Neurol 55:160–165

    PubMed  CrossRef  Google Scholar 

  • Bowsher D, Leijon G, Thuomas K-A (1998) Central post-stroke pain: correlation of magnetic resonance imaging with clinical pain characteristics and sensory abnormalities. Neurology 51:1352–1358

    CAS  PubMed  CrossRef  Google Scholar 

  • Bowsher D, Brooks J, Enevoldson P (2004) Central representation of somatic sensations in the parietal operculum (SII) and insula. Eur Neurol 52:211–225

    PubMed  CrossRef  Google Scholar 

  • Broca P (1878) Nomenclature cérébrale: Dénomination et subdivision des hémisphères et des anfractuosités de la surface. Rev Anthropol, 2e Série 1:193–236

    Google Scholar 

  • Brodal A (1965) The cranial nerves: anatomy and anatomo-clinical correlations, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Brodal A (1981) Neurological anatomy. In: Relation to clinical medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Brooks J, Tracey I (2005) From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat (Lond) 207:19–33

    CrossRef  Google Scholar 

  • Brooks JC, Nurmikko T, Bimson WE, Singh KD, Roberts N (2002) fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15:293–301

    PubMed  CrossRef  Google Scholar 

  • Burchiel KJ (1990) Deafferentation syndromes and dorsal root entry zone lesions. In: Fields HL (ed) Pain syndromes in neurology. Butterworth-Heinemann, Oxford, pp 201–222

    CrossRef  Google Scholar 

  • Burton H (1986) Second somatosensory cortex and related areas. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Plenum, New York, pp 31–98

    Google Scholar 

  • Burton H (2002) Cerebral cortical regions devoted to the somatosensory system: results from brain imaging studies in humans. In: Nelson RJ (ed) The somatosensory system. Deciphering the brain’s own body image. CRC Press, Boca Raton, pp 28–72

    Google Scholar 

  • Burton H, Craig AD (1979) Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res 161:515–521

    CAS  PubMed  CrossRef  Google Scholar 

  • Burton H, Sinclair RJ (1996) Somatosensory cortex and tactile perceptions. In: Kruger L (ed) Touch and pain. Academic, San Diego, pp 105–177

    CrossRef  Google Scholar 

  • Burton H, Fabri M, Alloway K (1995) Cortical areas within the lateral sulcus connected to cutaneous representations in areas 3b and 1: a revised interpretation of the second somatosensory area in macaque monkeys. J Comp Neurol 355:539–562

    CAS  PubMed  CrossRef  Google Scholar 

  • Bushnell MC, Duncan GH, Dubner R, He LF (1984) Activity of trigeminothalamic neurons in medullary dorsal horn of awake monkeys trained in a thermal discrimination task. J Neurophysiol 52:170–187

    CAS  PubMed  CrossRef  Google Scholar 

  • Calne DB, Pallis CA (1966) Vibratory sense: a critical review. Brain 89:723–746

    CAS  PubMed  CrossRef  Google Scholar 

  • Capra NF, Dessem D (1992) Central connections of trigeminal primary afferent neurons: topographical and functional correlations. Crit Rev Oral Biol Med 4:1–52

    CAS  PubMed  CrossRef  Google Scholar 

  • Carlson M (1981) Characteristics of sensory deficits following lesions of Brodmann’s areas 1 and 2 in the postcentral gyrus of Macaca mulatta. Brain Res 204:424–430

    CAS  PubMed  CrossRef  Google Scholar 

  • Carrera E, Bogousslavsky J (2006) The thalamus and behavior. Effects of anatomically distinct strokes. Neurology 66:1817–1823

    PubMed  CrossRef  Google Scholar 

  • Caselli RJ (1993) Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans. Neurology 43:762–771

    CAS  PubMed  CrossRef  Google Scholar 

  • Casey KL, Minoshima S, Morrow TJ, Koeppe RA (1996) Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol 76:571–581

    CAS  PubMed  CrossRef  Google Scholar 

  • Caspers S, Amunts K, Zilles K (2012) Posterior parietal cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1036–1053

    CrossRef  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6:726–736

    CAS  PubMed  CrossRef  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:241–242

    CrossRef  Google Scholar 

  • Caterina MJ, Gold MS, Meyer RA (2005) Molecular biology of nociceptors. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, Oxford, pp 1–33

    Google Scholar 

  • Cauna N (1956) Nerve supply and nerve endings in Meissner’s corpuscles. Am J Anat 99:315–350

    CAS  PubMed  CrossRef  Google Scholar 

  • Cauna N (1965) The effects of aging on the receptor organs of the human dermis. Adv Biol Ski 6:63–96

    Google Scholar 

  • Cauna N, Mannan G (1959) Development and postnatal changes of digital Pacinian corpuscles (Corpuscula lamellosa) in the human hand. J Anat (Lond) 93:271–286

    CAS  Google Scholar 

  • Cavada C, Goldman-Rakic P (1989a) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421

    CAS  PubMed  CrossRef  Google Scholar 

  • Cavada C, Goldman-Rakic P (1989b) Ibid. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    CAS  PubMed  CrossRef  Google Scholar 

  • Celesia GG (1979) Somatosensory evoked potentials recorded directly from human thalamus and SmI cortical area. Arch Neurol 36:399–405

    CAS  PubMed  CrossRef  Google Scholar 

  • Cervero F (1994) Sensory innervation of the viscera: peripheral basis of visceral pain. Physiol Rev 74:95–138

    CAS  PubMed  CrossRef  Google Scholar 

  • Cervero F, Foreman DD (1990) Sensory innervation of the viscera. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic functions. Oxford University Press, New York, pp 104–125

    Google Scholar 

  • Cheema S, Rustioni A, Whitsel BL (1985) Sensorimotor cortical projections to the primate cuneate nucleus. J Comp Neurol 240:196–211

    CAS  PubMed  CrossRef  Google Scholar 

  • Chouchkov C (1978) Cutaneous receptors. Adv Anat Embryol Cell Biol 54:1–62

    Google Scholar 

  • Cliffer KD, Burstein R, Giesler GJ Jr (1991) Distributions of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 11:852–868

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Coggeshall RA, Chung K, Chung JM, Langford LA (1981) Primary afferent axons in the tract of Lissauer in the monkey. J Comp Neurol 196:431–442

    CAS  PubMed  CrossRef  Google Scholar 

  • Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH (1994) Distributed processing of pain and vibration by the human brain. J Neurosci 14:4095–4108

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Coghill RC, Sang CN, Maisong JM, Iadarola MJ (1999) Pain-intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943

    CAS  PubMed  CrossRef  Google Scholar 

  • Cole J (1995) Pride and a daily marathon. MIT Press, Cambridge, MA

    Google Scholar 

  • Cook AW, Kawakami Y (1977) Commissural myelotomy. J Neurosurg 47:1–6

    CAS  PubMed  CrossRef  Google Scholar 

  • Cook AW, Nathan PW, Smith MC (1984) Sensory consequences of commissural myelotomy. A challenge to traditional anatomical concepts. Brain 107:547–568

    PubMed  CrossRef  Google Scholar 

  • Coq JQ, Qi H, Collins CE, Kaas JH (2004) Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch). J Comp Neurol 476:363–387

    PubMed  CrossRef  Google Scholar 

  • Corkin S, Milner B, Rasmussen M (1970) Somatosensory thresholds: contrasting effects of postcentral gyrus and posterior parietal lobe excisions. Arch Neurol 23:41–58

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2000) The functional anatomy of lamina I and its role in post-stroke central pain. Prog Brain Res 129:137–151

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Neurosci Rev 3:655–666

    CAS  CrossRef  Google Scholar 

  • Craig AD (2003a) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2003b) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2004a) Distribution of trigeminothalamic and spinothalamic lamina I terminations in the macaque monkey. J Comp Neurol 477:119–148

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2004b) Lamina I, but not lamina V, spinothalamic neurons exhibit responses that correspond with burning pain. J Neurophysiol 92:2604–2609

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to ventral posterior nuclei. J Comp Neurol 499:965–978

    PubMed  CrossRef  Google Scholar 

  • Craig AD (2008) Retrograde analyses of spinothalamic projections in the macaque monkey: input to the ventral lateral nucleus. J Comp Neurol 508:315–328

    PubMed  CrossRef  Google Scholar 

  • Craig AD (2009) How do you feel – now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD (2014) Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus (VMpo) in the long-tailed macaque monkey. J Comp Neurol 522:36–63

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Craig AD (2015) How do you feel? An interoceptive moment with your neurobiological self. Princeton University Press, Princeton

    CrossRef  Google Scholar 

  • Craig AD, Blomqvist A (2002) Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates? J Pain 3:95–101

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD, Zhang ET (2006) Retrograde analyses of spinothalamic projections in the macaque monkey: input to posterolateral thalamus. J Comp Neurol 499:953–964

    PubMed  CrossRef  Google Scholar 

  • Craig AD, Bushnell MC, Zhang ET, Blomqvist A (1994) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD, Zhang ET, Blomqvist A (1999) A distinct thermoreceptive subregion of lamina I in nucleus caudalis of the owl monkey. J Comp Neurol 404:221–234

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    CAS  PubMed  CrossRef  Google Scholar 

  • Craig AD, Zhang ET, Blomqvist A (2002) Association of spinothalamic lamina I neurons and their ascending axons with calbindin-immunoreactivity in monkey and human. Pain 97:105–115

    CAS  PubMed  CrossRef  Google Scholar 

  • Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163

    CAS  PubMed  CrossRef  Google Scholar 

  • Cunningham DJ (1892) Surface anatomy of the cerebral hemispheres. Academy House, Dublin

    Google Scholar 

  • Cusick CG, Gould HJ (1990) Connections between area 3b of the somatosensory cortex and subdivisions of the ventroposterior nuclear complex and the anterior pulvinar nucleus in squirrel monkeys. J Comp Neurol 292:83–102

    CAS  PubMed  CrossRef  Google Scholar 

  • Cusick CG, Steindler DA, Kaas JH (1985) Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: a double-labeling study with wheat germ agglutinin (WGA) conjugated to horseradish peroxidase and radiolabeled WGA. Somatosens Res 3:1–31

    CAS  PubMed  CrossRef  Google Scholar 

  • Darian-Smith I (1973) The trigeminal system. In: Iggo A (ed) Handbook of sensory physiology, Somatosensory system, vol 2. Springer, Berlin-Heidelberg-New York, pp 271–314

    Google Scholar 

  • Darian-Smith I (1984) The sense of touch: performance and peripheral neural processes. In: Darian-Smith I (ed) Handbook of physiology, sect 1: the nervous system, Sensory processes, vol III. American Physiological Society, Bethesda, pp 739–788

    Google Scholar 

  • Darian-Smith C, Darian-Smith I, Cheema SS (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of retrograde fluorescent tracers. J Comp Neurol 299:17–46

    CAS  PubMed  CrossRef  Google Scholar 

  • Darian-Smith I, Galea MP, Darian-Smith C, Sugitani M, Tan A, Burman K (1996) The anatomy of manual dexterity. Adv Anat Embryol Cell Biol 133:1–142

    CAS  PubMed  CrossRef  Google Scholar 

  • Davis KD, Kiss ZHT, Tasker RR, Dostrovsky JO (1996) Thalamic stimulation-evoked sensations in chronic pain patients and in nonpain (movement disorder) patients. J Neurophysiol 75:1026–1037

    CAS  PubMed  CrossRef  Google Scholar 

  • Davis KD, Kwan CL, Crawley AP, Mikulis DJ (1998) Functional MRI study of thalamic and cortical activations evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol 80:1533–1546

    CAS  PubMed  CrossRef  Google Scholar 

  • Davis KD, Lozano AM, Manduch M, Tasker RR, Kiss ZHT, Dostrovsky JO (1999) Thalamic relay site for cold perception in humans. J Neurophysiol 81:1970–1973

    CAS  PubMed  CrossRef  Google Scholar 

  • Davis KD, Pope GE, Crawley AP, Mikulis DJ (2002) Neural correlates of prickle sensation: a percept-related fMRI study. Nat Neurosci 5:1121–1122

    CAS  PubMed  CrossRef  Google Scholar 

  • Dejerine J (1914) Sémiologie des affections du système nerveux. Masson, Paris

    Google Scholar 

  • Dejerine J, Roussy J (1906) Le syndrome thalamique. Rev Neurol (Paris) 14:521–532

    Google Scholar 

  • Del Fiacco M, Quartu M, Pina Serra M, Boi M, Demontis R, Poddighe L et al (2014) The human cuneate nucleus contains discrete subregions whose neurochemical features match those of the relay nuclei for nociceptive information. Brain Struct Funct 219:2083–2101

    PubMed  CrossRef  Google Scholar 

  • Del Fiacco M, Pina Serra M, Boi M, Poddighe L, Demontis R, Carai A, Quartu M (2018) TRPV1-like immunoreactivity in the human locus K, a distinct subregion of the cuneate nucleus. Cell 7:72

    CrossRef  CAS  Google Scholar 

  • Denny-Brown D (1950) Disintegration of motor function resulting from cerebral lesions. J Nerv Ment Dis 112:1–45

    CAS  PubMed  CrossRef  Google Scholar 

  • Denny-Brown D, Yanagisawa N (1973) The function of the descending root of the fifth nerve. Brain 96:783–814

    CAS  PubMed  CrossRef  Google Scholar 

  • Desmedt JE, Ozaki I (1991) SEPs to finger joint input lack the N20-P20 response that is evoked by tactile inputs: contrast between cortical generators in areas 3b and 2 in humans. Electroencephalogr Clin Neurophysiol 80:513–521

    CAS  PubMed  CrossRef  Google Scholar 

  • Dietrich C, Blume KR, Franz M, Huonker R, Carl M, Preiβler S et al (2017) Dermatomal organization of S1 leg representation in humans: revisiting the somatosensory homunculus. Cereb Cortex 27:4564–4569

    PubMed  Google Scholar 

  • Disbrow E, Roberts T, Krubitzer L (2000) Somatotopic organization of cortical fields in the lateral fields of Homo sapiens: evidence for SII and PV. J Comp Neurol 418:1–21

    CAS  PubMed  CrossRef  Google Scholar 

  • Disbrow E, Roberts T, Peoppel D, Krubitzer K (2001) Evidence for interhemispheric processing of inputs from the hands in the human second somatosensory and parietal ventral areas. J Neurophysiol 85:2236–2244

    CAS  PubMed  CrossRef  Google Scholar 

  • Domino EF, Matsuoka S, Waltz J, Cooper IS (1965) Effects of cryogenic thalamic lesions on the somesthetic evoked response in man. Electroencephalogr Clin Neurophysiol 53:143–165

    Google Scholar 

  • Donaghy M (1993) Lumbosacral plexus lesions. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. Saunders, Philadelphia, pp 951–958

    Google Scholar 

  • Donaldson IML (1973) The properties of some human thalamic units. Some new observations and a critical review of the localization of thalamic nuclei. Brain 96:419–440

    CAS  PubMed  CrossRef  Google Scholar 

  • Dostrovsky JO (2000) The role of thalamus in pain. Prog Brain Res 129:245–257

    CAS  PubMed  CrossRef  Google Scholar 

  • Dostrovsky JO, Craig AD (1996) Cooling-specific spinothalamic neurons in the monkey. J Neurophysiol 76:3656–3665

    CAS  PubMed  CrossRef  Google Scholar 

  • Dreyer DA, Schneider RJ, Metz CB, Whitsel BL (1974) Differential contributions of spinal pathways to body representation in postcentral gyrus of Macaca mulatta. J Neurophysiol 37:119–145

    CAS  PubMed  CrossRef  Google Scholar 

  • Ducreux D, Attal N, Parker F, Bouhassira D (2006) Mechanisms of central neuropathic pain: a combined psychophysical and fMRI study in syringomyelia. Brain 129:963–976

    PubMed  CrossRef  Google Scholar 

  • Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29:14223–14235

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dunckley P, Wise RG, Fairhurst M, Hobden P, Aziz Q, Chang L, Tracey I (2005) A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 25:7333–7341

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dusser de Barenne JG (1916) Über die Innervation und den Tonus der quergestreiften Muskeln. Pflüg Arch Ges Physiol 166:145–165

    CrossRef  Google Scholar 

  • Dyck PJ (1993) Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. Saunders, Philadelphia, pp 1065–1093

    Google Scholar 

  • Dyck PJ, Lambert EH (1969) Dissociated sensation in amyloidosis; compound action potential, quantitative histologic, teased-fiber, and electron microscopic studies of sural nerve biopsies. Arch Neurol 20:490–507

    CAS  PubMed  CrossRef  Google Scholar 

  • Dykes RW, Sur M, Merzenich MM, Kaas JH, Nelson RJ (1981) Regional segregation of neurons responding to quickly adapting, slow adapting, deep and pacinian receptors within thalamic ventroposterior lateral and ventroposterior inferior nuclei in the squirrel monkey (Saimiri sciureus). Neuroscience 6:1687–1692

    CAS  PubMed  CrossRef  Google Scholar 

  • Edwards SB, de Olmos JS (1976) Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol 165:417–431

    CAS  PubMed  CrossRef  Google Scholar 

  • Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267

    PubMed  CrossRef  Google Scholar 

  • Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) Ibid. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279

    PubMed  CrossRef  Google Scholar 

  • Emmers R, Tasker RR (1975) The human somesthetic thalamus. Raven, New York

    Google Scholar 

  • Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia

    CrossRef  Google Scholar 

  • Evrard HC (2019) The organization of the primate insular cortex. Front Neuroanat 13:43

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Evrard HC, Logothetis NK, Craig AD (2014) Modular architectonic organization of the insula in the macaque monkey. J Comp Neurol 522:64–97

    PubMed  CrossRef  Google Scholar 

  • Ferner H (1970) The anatomy of the trigeminal tract and the gasserian ganglion and their relations to the cerebral meninges. In: Hassler R, Walker AE (eds) Trigeminal neuralgia. Pathogenesis and pathophysiology. Thieme, Stuttgart, pp 1–6

    Google Scholar 

  • Ferraro A, Barrera SE (1936) The effect of lesions of the dorsal column nuclei in the Macacus rhesus. Brain 59:76–99

    CrossRef  Google Scholar 

  • Fields HL, Basbaum AI (1999) Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (eds) Textbook of pain, 3rd edn. Churchill Livingstone, Edinburgh, pp 309–329

    Google Scholar 

  • Findler G, Feinsod M (1982) Sensory evoked response to electrical stimulation of the trigeminal nerve in humans. J Neurosurg 56:545–549

    CAS  PubMed  CrossRef  Google Scholar 

  • Fitzgerald PJ, Lane JW, Thakur PH, Hsiao SS (2004) Receptive field properties of the macaque second somatosensory cortex: evidence for multiple functional representations. J Neurosci 24:11193–11204

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Florence SL (2002) The changeful mind: plasticity in the somatosensory system. In: Nelson RJ (ed) The somatosensory system. Deciphering the brain’s own body image. CRC Press, Boca Raton, pp 335–366

    Google Scholar 

  • Florence SL, Wall JT, Kaas JH (1988) The somatotopic pattern of afferent projections from the digits to the spinal cord and cuneate nucleus in macaque monkeys. Brain Res 452:388–392

    CAS  PubMed  CrossRef  Google Scholar 

  • Florence SL, Wall JT, Kaas JH (1989) Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. J Comp Neurol 296:48–70

    CrossRef  Google Scholar 

  • Florence SL, Wall JT, Kaas JH (1991) Central projections from the skin of the hand in squirrel monkeys. J Comp Neurol 311:563–578

    CAS  PubMed  CrossRef  Google Scholar 

  • Foerster O (1927a) Die Leitungsbahnen des Schmerzgefühls und die chirurgische Behandlung der Schmerzzustände. Urban und Schwarzenberg, Berlin

    Google Scholar 

  • Foerster O (1927b) Über die Vorderseitenstrangdurchschneidung. Arch Psychiat Nervenkrankh 81:707–717

    Google Scholar 

  • Foerster O (1931) The cerebral cortex in man. Lancet 221:309–312

    Google Scholar 

  • Foerster O (1933) The dermatomes in man. Brain 56:1–39

    CrossRef  Google Scholar 

  • Foerster O (1936a) Symptomatologie der Erkrankungen des Rückenmarks und seiner Wurzeln. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol 5. Springer, Berlin, pp 1–403

    Google Scholar 

  • Foerster O (1936b) Motorische Felder und Bahnen. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol 6. Springer, Berlin, pp 1–357

    Google Scholar 

  • Foerster O (1936c) Sensible corticale Felder. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol 6. Springer, Berlin, pp 358–448

    Google Scholar 

  • Foerster O (1936d) The motor cortex in man in the light of Hughlings Jackson’s doctrines. Brain 59:135–159

    CrossRef  Google Scholar 

  • Foerster O, Gagel O (1932) Die Vorderseitenstrangdurchschneidung beim Menschen. Eine klinisch-patho-physiologisch-anatomische Studie. Z Ges Neurol Psychiat 138:1–92

    CrossRef  Google Scholar 

  • Fox PT, Burton H, Raichle ME (1987) Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67:34–43

    CAS  PubMed  CrossRef  Google Scholar 

  • Francis ST, Kelly EF, Bowtell R, Dunseath WJR, Folger SE, McGlone F (2000) fMRI of the responses to vibratory stimulation of digit tips. NeuroImage 11:188–202

    CAS  PubMed  CrossRef  Google Scholar 

  • French LA, Peyton WT (1948) Ipsilateral sensory loss following cordotomy. J Neurosurg 5:403–404

    CAS  PubMed  CrossRef  Google Scholar 

  • Freund H-J (2003) Somatosensory and motor disturbances in patients with parietal lobe lesions. Adv Neurol 93:179–193

    PubMed  Google Scholar 

  • Freund H-J (2005) Unimodal sensory-motor transformation disorders. In: Freund H-J, Jeannerod M, Hallett M, Leiguarda R (eds) Higher-order motor disorders: from neuroanatomy and neurobiology to clinical neurology. Oxford University Press, Oxford, pp 339–358

    Google Scholar 

  • Friedman DP, Murray EA (1986) Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. J Comp Neurol 252:348–373

    CAS  PubMed  CrossRef  Google Scholar 

  • Friedman DP, Murray EA, O’Neill JB, Mishkin M (1986) Cortical connections of somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252:323–347

    CAS  PubMed  CrossRef  Google Scholar 

  • Fristad I (1997) Dental innervation: functions and plasticity after peripheral surgery. Acta Odontol Scand 55:236–254

    CAS  PubMed  CrossRef  Google Scholar 

  • Frot M, Mauguière F (2003) Dual representation of pain in the operculo-insular cortex in humans. Brain 126:438–450

    PubMed  CrossRef  Google Scholar 

  • Frot M, Garcia-Laurea L, Guénot M, Mauguière F (2001) Responses of the suprasylvian (SII) cortex in humans to painful and innocuous stimuli. A study using intra-cerebral recordings. Pain 94:65–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Frot M, Mauguière F, Magnin M, Garcia-Larrea L (2008) Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J Neurosci 28:944–952

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fukushima T, Mayanagi Y, Bouchard G (1976) Thalamic evoked potentials to somatosensory stimulation in man. Electroencephalogr Clin Neurophysiol 40:481–490

    CAS  PubMed  CrossRef  Google Scholar 

  • Ganchrow D (1978) Intratrigeminal and thalamic projections of nucleus caudalis in the squirrel monkey (Saimiri sciureus): a degeneration and autoradiographic study. J Comp Neurol 178:281–312

    CAS  PubMed  CrossRef  Google Scholar 

  • Gandevia SC, Burke D, McKeon B (1984) The projection of muscle afferents from the hand to cerebral cortex in man. Brain 107:1–13

    PubMed  CrossRef  Google Scholar 

  • Gans A (1916) Über Tastblindheit und über Störungen der räumlichen Wahrnehmungen der Sensibilität. Z Ges Neurol Psychiat 31:303–428

    CrossRef  Google Scholar 

  • Garcin R, Lapresle J (1960) Deuxième observation personnelle de syndrome sensitif de type thalamique à topographie cheiro-orale par lésion localisée du thalamus. Rev Neurol (Paris) 103:474–481

    CAS  Google Scholar 

  • Gauriau C, Bernard JF (2004a) Posterior thalamic neurons convey nociceptive messages to the second somatosensory and insular cortices in the rat. J Neurosci 24:752–761

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gauriau C, Bernard JF (2004b) A comparative reappraisal of projections from the superficial laminae of the dorsal horn of the rat. J Comp Neurol 468:24–56

    PubMed  CrossRef  Google Scholar 

  • Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Res 27:729–737

    CAS  CrossRef  Google Scholar 

  • Gebhart GF, Proudfit HK (2005) Descending control of pain processing. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, Oxford, pp 289–309

    CrossRef  Google Scholar 

  • Gelnar PA, Krauss RB, Szeverenyi NM, Apkarian AV (1998) Fingertip representation in the human somatosensory cortex: an fMRI study. NeuroImage 7:261

    CAS  PubMed  CrossRef  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: Cytoarchitecture and regional distributions of receptor-binding sites. NeuroImage 6:27–45

    CAS  PubMed  CrossRef  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex. 1. Microstructural organization and interindividual variability. NeuroImage 10:63–83

    CAS  PubMed  CrossRef  Google Scholar 

  • Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Ibid. 2. Spatial normalization to standard anatomical space. NeuroImage 11:684–696

    CAS  PubMed  CrossRef  Google Scholar 

  • Giesler GJ Jr, Katter JT, Dado RJ (1994) Direct spinal pathways to the limbic system for nociceptive information. Trends Neurosci 17:244–250

    PubMed  CrossRef  Google Scholar 

  • Gildenberg PL, Hirshberg RM (1984) Limited myelotomy for the treatment of intractable cancer pain. J Neurol Neurosurg Psychiatry 47:94–96

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gildenberg PL, Murthy KSK (1980) Influence of dorsal column stimulation upon human thalamic somatosensory-evoked potentials. Appl Neurophysiol 43:8–17

    CAS  PubMed  Google Scholar 

  • Gilman S, Denny-Brown D (1966) Disorders of movement and behaviour following dorsal column lesions. Brain 89:397–418

    CAS  PubMed  CrossRef  Google Scholar 

  • Gingold SI, Greenspan JD, Apkarian AV (1991) Anatomic evidence of nociceptive inputs to primary somatosensory cortex: relationship between spinothalamic terminals and thalamocortical cells in squirrel monkeys. J Comp Neurol 308:467–490

    CAS  PubMed  CrossRef  Google Scholar 

  • Glendenning DS, Cooper PY, Vierck CJ Jr, Leonard CM (1992) Altered precision grasping in stumptail macaques after fasciculus cuneatus lesions. Somatosens Mot Res 9:61–73

    CrossRef  Google Scholar 

  • Gobel S, Hockfield S, Ruda MA (1981) Anatomical similarities between the medullary and spinal dorsal horns. In: Kawamura Y, Dubner R (eds) Oral-facial sensory and motor functions. Quintescence, Tokyo, pp 211–223

    Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observations compared with imagination. Exp Brain Res 112:103–111

    CAS  PubMed  CrossRef  Google Scholar 

  • Grafton ST, Hari R, Salenius S (2000) The human motor system. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic, San Diego, pp 331–363

    CrossRef  Google Scholar 

  • Graham SH, Sharp FR, Dillon W (1988) Intraoral sensation in patients with brainstem lesions: role of the rostral spinal trigeminal nuclei in pons. Neurology 38:1529–1533

    CAS  PubMed  CrossRef  Google Scholar 

  • Graziano A, Jones EG (2004) Widespread thalamic terminations of fibers arising in the superficial medullary dorsal horn of monkeys and their relation to calbindin immunoreactivity. J Neurosci 24:248–256

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Greenspan JD, Lee RR, Lenz FA (1999) Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain 81:273–282

    CAS  PubMed  CrossRef  Google Scholar 

  • Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. NeuroImage 14:617–631

    CAS  PubMed  CrossRef  Google Scholar 

  • Griffin CJ, Harris R (1975) Innervation of the temporomandibular joint. Aust Dental J 20:78–85

    CAS  CrossRef  Google Scholar 

  • Grudt TJ, Perl ER (2002) Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol Lond 540:189–207

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ha H, Morin F (1964) Comparative anatomical organizations of the cervical nucleus, N. cervicalis lateralis, of some primates. Anat Rec 148:374–375

    Google Scholar 

  • Hadjipavlou G, Dunckley P, Behrens TE, Tracey I (2006) Determining anatomical connections between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain 123:169–178

    PubMed  CrossRef  Google Scholar 

  • Hagbarth K, Kerr D (1954) Central influences on spinal afferent conduction. J Neurophysiol 17:295–307

    CAS  PubMed  CrossRef  Google Scholar 

  • Halata Z (1975) The mechanoreceptors of mammalian skin. Ultrastructure and morphological classification. Adv Anat Embryol Cell Biol 50:1–77

    Google Scholar 

  • Halata Z, Munger BL (1983) The sensory innervation of primate facial skin. II. Vermilion border and mucosa of lip. Brain Res Rev 5:81–107

    CrossRef  Google Scholar 

  • Hansen K, Schliack H (1962) Segmentale innervation. Ihre Bedeutung für Klinik und Praxis. Thieme, Stuttgart

    Google Scholar 

  • Hari R, Reinikainen K, Kaukoranta E, Hamalainen M, Ilmoniemi R, Penttinen A et al (1984) Somatosensory organization of the human first and second somatosensory cortices: a neuromagnetic study. Electroencephalogr Clin Neurophysiol 57:254–263

    CAS  PubMed  CrossRef  Google Scholar 

  • Hari R, Karhu J, Hamalainen M, Knuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and secondary somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734

    CAS  PubMed  CrossRef  Google Scholar 

  • Hassler R (1959) Anatomy of the thalamus. In: Schaltenbrand G, Bailey P (eds) Introduction to Stereotaxis with an atlas of the human brain. Thieme, Stuttgart, pp 230–290

    Google Scholar 

  • Hassler R (1982) Architectonic organization of the thalamic nuclei. In: Schaltenbrand G, Walker AE (eds) Stereotaxy of the human brain. Anatomical, physiological and clinical application. Thieme, Stuttgart, pp 140–180

    Google Scholar 

  • Hayes RI, Price DD, Ruda M, Dubner R (1979) Suppression of nociceptive responses in the primate by electrical stimulation of the brain or morphine administration; behavioral and electrophysiological comparisons. Brain Res 167:417–421

    CAS  PubMed  CrossRef  Google Scholar 

  • Head H (1920) Studies in neurology. H. Frowde, London

    Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    CrossRef  Google Scholar 

  • Hikosaka O, Tanaka M, Sokamoto M, Iwamura Y (1985) Deficits in manipulative behaviors induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey. Brain Res 325:375–380

    CAS  PubMed  CrossRef  Google Scholar 

  • Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Rev 14:1–34

    CAS  PubMed  CrossRef  Google Scholar 

  • Hoshiyama M, Kakigi R, Koyama S, Kitamura Y, Shimojo M, Watanabe S (1996) Somatosensory evoked magnetic fields following stimulation of the lip in humans. Electroencephalogr Clin Neurophysiol 100:96–104

    CAS  PubMed  CrossRef  Google Scholar 

  • Hosobuchi Y, Adamas JE, Linchitz K (1977) Pain relief by electrical stimulation of the central gray in humans and its reversal by naloxone. Science 197:183–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Hua SE, Garonzik IM, Lee JI, Lenz FA (2000) Microelectrode studies of normal organization and plasticity of human somatosensory thalamus. J Clin Neurophysiol 17:559–574

    CAS  PubMed  CrossRef  Google Scholar 

  • Hunt SP, Bester H (2005) The ascending pain pathways. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, Oxford, pp 165–184

    CrossRef  Google Scholar 

  • Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex. Nat Neurosci 2:403–405

    CAS  PubMed  CrossRef  Google Scholar 

  • Hyndman OR (1942) Lissauer’s tract section. A contribution to chordotomy for the relief of pain. J Int Coll Surg 5:394–400

    Google Scholar 

  • Hyvärinen J (1982) The parietal cortex of monkey and man. Springer, New York

    CrossRef  Google Scholar 

  • Iggo A (1974) Cutaneous receptors. In: Hubbard J (ed) The peripheral nervous system. Plenum, New York, pp 347–404

    CrossRef  Google Scholar 

  • Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol Lond 200:763–796

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ishijima B, Yoshimasu N, Fukushima T, Hori T, Sekino H, Sano K (1975) Nociceptive neurons in human thalamus. Confin Neurol 37:99–106

    CAS  PubMed  CrossRef  Google Scholar 

  • Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1993) Rostrocaudal gradient in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp Brain Res 92:360–368

    CAS  PubMed  CrossRef  Google Scholar 

  • Iyengar S, Qi H-X, Jain N, Kaas JH (2007) Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of New World monkeys. J Comp Neurol 501:95–120

    PubMed  CrossRef  Google Scholar 

  • Jacquin MF, Golden J, Panneton WM (1988) Structure and function of barrel ‘precursor’ cells in trigeminal nucleus principalis. Dev Brain Res 43:309–314

    CrossRef  Google Scholar 

  • Jain N, Catania KC, Kaas JH (1998) A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long term deafferentation. Cereb Cortex 8:227–236

    CAS  PubMed  CrossRef  Google Scholar 

  • Jain N, Qi HX, Catania KC, Kaas JH (2001) Anatomical correlates of the face and oral cavity representations in somatosensory cortical area 3b of monkeys. J Comp Neurol 429:455–468

    CAS  PubMed  CrossRef  Google Scholar 

  • Jakobson LS, Archibald Y, Carey D, Goodale MA (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29:803–809

    CAS  PubMed  CrossRef  Google Scholar 

  • Jancsö G, Kiraly E, Jancsö-Gábor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurons. Nature 270:741–743

    PubMed  CrossRef  Google Scholar 

  • Jang SH, Seo JP, Lee SJ (2019) Diffusion tensor tractography studies of central post-stroke pain due to the spinothalamic tract injury: a mini-review. Front Neurol 10:787

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jänig W (1996) Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulation and sensations. Biol Psychol 42:29–51

    PubMed  CrossRef  Google Scholar 

  • Jänig W (2008) Integrated action of the autonomic nervous system: neurobiology of homeostasis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jänig W, Häbler H-J (1999) Organization of the autonomic nervous system: structure and function. Handb Clin Neurol 74:1–52

    Google Scholar 

  • Jänig W, Häbler H-J (2000a) Specificity in the organization of the autonomic nervous system: a basis for precise neural regulation of homeostatic and protective body functions. Prog Brain Res 122:351–367

    PubMed  CrossRef  Google Scholar 

  • Jänig W, Häbler H-J (2000b) Sympathetic nervous system: contribution to chronic pain. Prog Brain Res 129:451–468

    PubMed  CrossRef  Google Scholar 

  • Jannetta PJ (1967a) Gross (mesoscopic) description of the human trigeminal nerve and ganglion. J Neurosurg 26(Suppl 1):109–111

    CrossRef  Google Scholar 

  • Jannetta PJ (1967b) Arterial compression of the trigeminal nerve at the pons in patients with trigeminal neuralgia. J Neurosurg 26(Suppl 1):159–167

    CrossRef  Google Scholar 

  • Jannetta PJ (1977) Observations on the etiology of trigeminal neuralgia, hemifacial spasm, acoustic nerve dysfunction and glossopharyngeal neuralgia. Definite microsurgical treatment and results in 117 patients. Neurochirurgia (Stuttg) 20:145–154

    CAS  Google Scholar 

  • Jannetta PJ (1980) Neurovascular compression in cranial nerve and systemic disease. Ann Surg 192:518–525

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jeanmonod D, Sindou M (1991) Somatosensory function following dorsal root entry zone lesions in patients with neurogenic pain or spasticity. J Neurosurg 74:916–932

    CAS  PubMed  CrossRef  Google Scholar 

  • Jeannerod M (1986) Mechanisms of visuomotor coordination: a study in normal and brain-damaged subjects. Neuropsychologia 24:41–78

    CAS  PubMed  CrossRef  Google Scholar 

  • Jeannerod M, Farnè A (2003) The visuomotor functions of the posterior parietal areas. Adv Neurol 93:205–217

    PubMed  Google Scholar 

  • Jeannerod M, Michel F, Prablanc C (1984) The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107:899–920

    PubMed  CrossRef  Google Scholar 

  • Jeannerod M, Decety J, Michel F (1994) Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32:369–380

    CAS  PubMed  CrossRef  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformations. Trends Neurosci 18:314–320

    CAS  PubMed  CrossRef  Google Scholar 

  • Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol Lond 286:283–300

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Johansson RS, Vallbo AB (1983) Tactile sensory coding in the glabrous skin of the human. Trends Neurosci 6:27–32

    CrossRef  Google Scholar 

  • Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

    CAS  PubMed  CrossRef  Google Scholar 

  • Johansson RS, Trulsson M, Olsson KA, Westberg K-G (1988) Mechanoreceptor activity from the human face and oral mucosa. Exp Brain Res 72:204–208

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnsen DC, Johns S (1978) Quantitation of nerve fibers in the primary and permanent canine and incisor teeth in man. Arch Oral Biol 23:825–830

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson KO, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17:539–558

    CAS  PubMed  CrossRef  Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    CrossRef  Google Scholar 

  • Jones EG (1998a) A new view of specific and nonspecific thalamocortical connections. Adv Neurol 77:49–73

    CAS  PubMed  Google Scholar 

  • Jones EG (1998b) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345

    CAS  PubMed  CrossRef  Google Scholar 

  • Jones EG (1998c) The thalamus of primates. Handb Chem Neuroanat 14:1–298

    CAS  CrossRef  Google Scholar 

  • Jones EG (2000) Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 23:1–37

    CAS  PubMed  CrossRef  Google Scholar 

  • Jones EG (2002) A pain in the thalamus. J Pain 3:102–104

    PubMed  CrossRef  Google Scholar 

  • Jones EG, Friedman DP (1982) Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48:521–544

    CAS  PubMed  CrossRef  Google Scholar 

  • Jones EG, Pons TP (1998) Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 282:1121–1125

    CAS  PubMed  CrossRef  Google Scholar 

  • Jones AKP, Brown WD, Friston KJ, Qi LY, Frackowiak RS (1991) Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Roy Soc Lond B 244:39–44

    CAS  CrossRef  Google Scholar 

  • Jones EG, Lensky KM, Chan VH (2001) Delineation of thalamic nuclei immunoreactive for calcium-binding proteins in and around the posterior pole of the ventral posterior complex. Thalamus Relat Syst 1:213–224

    CrossRef  Google Scholar 

  • Kaas JH (1983) What, if anything, is SI? The organization of the “first somatosensory area” of cortex. Physiol Rev 63:206–231

    CAS  PubMed  CrossRef  Google Scholar 

  • Kaas JH (2004) Somatosensory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1059–1092

    CrossRef  Google Scholar 

  • Kaas JH (2012) Somatosensory system. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1074–1109

    CrossRef  Google Scholar 

  • Kaas JH, Florence SL (2000) Reorganization of sensory and motor systems in adult mammals after injury. In: Kaas JH (ed) The mutable brain. Gordon and Breach Science Publishers, London, pp 165–242

    Google Scholar 

  • Kaas JH, Pons TP (1988) The somatosensory system of primates. In: Steklis HP, Erwin J (eds) Comparative primate biology, vol 4. Liss, New York, pp 421–468

    Google Scholar 

  • Kaas JH, Nelson RJ, Dykes RW, Merzenich MM (1984) The somatotopic organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J Comp Neurol 226:111–140

    CAS  PubMed  CrossRef  Google Scholar 

  • Kapandji IA (1981) The hand in art. In: Tubiana R (ed) The hand, vol 1. Saunders, Philadephia, pp 715–722

    Google Scholar 

  • Kaukoranto E, Hamalainen M, Sarvas J, Hari R (1986) Mixed and sensory nerve stimulations activate different cytoarchitectonic areas in the human primary somatosensory cortex SI. Exp Brain Res 63:60–66

    Google Scholar 

  • Keegan JJ, Garrett FD (1948) The segmental distribution of the cutaneous nerves in the limbs of man. Anat Rec 102:409–437

    CAS  PubMed  CrossRef  Google Scholar 

  • Kerr FWL (1963) The divisional organization of afferent fibers of the trigeminal nerve. Brain 86:721–732

    CAS  PubMed  CrossRef  Google Scholar 

  • Kerr FWL (1975) The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J Comp Neurol 159:335–356

    CAS  PubMed  CrossRef  Google Scholar 

  • Kevetter GA, Haber LH, Yezierski RP, Chung JM, Martin RF, Willis WD (1982) Cells of origin of the spinoreticular tract in the monkey. J Comp Neurol 207:61–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim JS (1992) Pure sensory stroke: clinical-radiological correlates of 21 cases. Stroke 23:983–987

    CAS  PubMed  CrossRef  Google Scholar 

  • Kim JS (2001) Sensory abnormality. In: Bogousslavsky J, Caplan LR (eds) Stroke syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 34–47

    CrossRef  Google Scholar 

  • Kim JS (2007) Patterns of sensory abnormality in cortical stroke. Evidence for a dichotomized sensory system. Neurology 68:174–180

    PubMed  CrossRef  Google Scholar 

  • Kim JH, Greenspan JD, Coghill RC, Ohara S, Lena FA (2007) Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 27:4995–5005

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kleist K (1922–1934) Gehirnpathologie. Handbuch der ärztlichen Erfahrungen im Weltkrieg 1914/1918, Bd IV. Barth, Leipzig

    Google Scholar 

  • Klit H, Finnerup NB, Jensen TS (2009) Central post-stroke pain: clinical characteristics, pathophysiology, and management. Lancet Neurol 8:857–868

    PubMed  CrossRef  Google Scholar 

  • Koyama T, Tanaka YZ, Mikami A (1998) Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain. Neuroreport 9:2663–2667

    CAS  PubMed  CrossRef  Google Scholar 

  • Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10:952–974

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Krubitzer LA, Kaas JH (1992) The somatosensory thalamus of monkeys: cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 319:1–18

    CrossRef  Google Scholar 

  • Krubitzer LA, Clarey J, Tweedale R, Elston G, Calford M (1995) A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys. J Neurosci 15:3821–3839

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kumar K, Toth C, Nath RK (1997) Deep brain stimulation for intractable pain: a 15-year-experience. Neurosurgery 40:736–746

    CAS  PubMed  CrossRef  Google Scholar 

  • Kunc Z (1970) Significant factors pertaining to the results of trigeminal tractotomy. In: Hassler R, Walker AE (eds) Trigeminal neuralgia. Pathogenesis and pathophysiology. Thieme, Stuttgart, pp 90–100

    Google Scholar 

  • Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20:1448–1461

    PubMed  CrossRef  Google Scholar 

  • Kuru M (1938) Die Veränderungen im Zentralnervensystem bei 2 Fällen von ‘partieller’ Chordotomie. Gann 32:1–25

    Google Scholar 

  • Kuru M (1940) Kritik des Chordotomieeffektes vom anatomischen Standpunkt aus. Zugleich ein Beitrag zur Kenntnis der sekundären Schmerzleitungsbahn (Tractus spinothalamicus). Dtsch Z Chirurgie 253:325–380

    CrossRef  Google Scholar 

  • Kuru M (1949) Sensory paths in the spinal cord and brain stem of man. Sogensya, Tokyo

    Google Scholar 

  • Kuypers HGJM (1958a) An anatomical analysis of cortico-bulbar connexions to the pons and lower brain stem in the cat. J Anat (Lond) 92:198–218

    CAS  Google Scholar 

  • Kuypers HGJM (1958b) Cortico-bulbar connections to the pons and lower brain stem in man. An anatomical study. Brain 81:364–388

    CAS  PubMed  CrossRef  Google Scholar 

  • Kuypers HGJM (1958c) Some projections from the pericentral cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110:221–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Kuypers HGJM, Tuerck JD (1964) The distribution of the cortical fibers within the nuclei cuneatus and gracilis in the cat. Brain Res 4:151–188

    CrossRef  Google Scholar 

  • Lahuerta J, Bowsher D, Lipton S, Buxton PH (1994) Percutaneous cervical cordotomy: a review of 181 operations on 146 patients with a study on the location of “pain fibers” in the C-2 spinal cord segment of 29 cases. J Neurosurg 80:975–985

    CAS  PubMed  CrossRef  Google Scholar 

  • Laird JMA, Schaible H-G (2005) Visceral and deep somatic pain. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, Oxford, pp 239–266

    CrossRef  Google Scholar 

  • Lambrichts I, Creemers J, van Steenberghe D (1992) Morphology of nasal endings in the human periodontal ligament: an electron microscopic study. J Periodontal Res 27:191–196

    CAS  PubMed  CrossRef  Google Scholar 

  • LaMotte C (1977) Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord. J Comp Neurol 72:529–561

    CrossRef  Google Scholar 

  • LaMotte RH, Mountcastle VB (1979) Disorders in somesthesis following lesions of parietal lobe. J Neurophysiol 42:400–419

    CAS  PubMed  CrossRef  Google Scholar 

  • Lang CE, Schieber MH (2004) Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex of corticospinal tracts. J Neurophysiol 91:1722–1733

    PubMed  CrossRef  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Lee S-H, Kim D-E, Song E-C, Roh J-K (2001) Sensory dermatomal representation in the medial lemniscus. Arch Neurol 58:649–651

    CAS  PubMed  Google Scholar 

  • Leijon G, Boivie J, Johansson I (1989) Central post-stroke pain – neurological symptoms and pain characteristics. Pain 36:13–25

    CAS  PubMed  CrossRef  Google Scholar 

  • Lenz FA, Dougherty PM (1997) Pain processing in the human thalamus. In: Steriade M, Jones EG, McCormick DA (eds) Thalamus, Experimental and clinical aspects, vol II. Elsevier, Amsterdam, pp 617–652

    Google Scholar 

  • Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT (1988) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59:299–316

    CAS  PubMed  CrossRef  Google Scholar 

  • Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR, Murphy JT, Lenz YE (1990) Single unit analysis of the human ventral thalamic nuclear group: activity correlated with movement. Brain 113:1795–1821

    PubMed  CrossRef  Google Scholar 

  • Lenz FA, Seike M, Lin YC, Baker FH, Rowland LH, Gracely RH, Richardson RT (1993a) Neurons in the area of human thalamic nucleus ventralis caudalis respond to painful heat stimuli. Brain Res 623:235–240

    CAS  PubMed  CrossRef  Google Scholar 

  • Lenz FA, Seike M, Richardson RT, Lin YC, Baker FH, Kboja I, Jaeger CJ, Gracely RH (1993b) Thermal and pain sensations evoked by microstimulation in the area of the ventral ventrocaudal nucleus. J Neurophysiol 70:200–212

    CAS  PubMed  CrossRef  Google Scholar 

  • Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT (1998a) Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol 59:299–316

    CrossRef  Google Scholar 

  • Lenz FA, Gracely RH, Baker FH, Richardson RT, Dougherty PM (1998b) Reorganization of sensory modalities evoked by microstimulation in the region of the thalamic principal sensory nucleus in patients with pain due to nervous system injury. J Comp Neurol 399:125–138

    CAS  PubMed  CrossRef  Google Scholar 

  • Leonard CM, Glendenning DS, Wilford T, Cooper BY, Vierck CJ Jr (1992) Alterations of normal hand movements after interruption of fasciculus cuneatus in the macaque. Somatosens Mot Res 9:75–89

    CAS  PubMed  CrossRef  Google Scholar 

  • Lin W, Kupusamy K, Haacke EM, Buton H (1996) Functional MRI in human somatosensory cortex activated by touching textured surface. J Magn Reson Imaging 6:565

    CAS  PubMed  CrossRef  Google Scholar 

  • Lissauer H (1886) Beitrag zum Faserverlauf im Hinterhorn des menschlichen Rückenmarkes und zum Verhalten desselben bei Tabes dorsalis. Arch Psychiatr Nervenheilkd 17:377–436

    CrossRef  Google Scholar 

  • Lloyd DPC, Chang HT (1948) Afferent fibers in muscle nerves. J Neurophysiol 11:199–208

    CAS  PubMed  CrossRef  Google Scholar 

  • Lohman AHM, ten Donkelaar HJ, Witter MP, Griffioen FMM (2007) De orgaanstelsels van het lichaam. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 21–119. (in Dutch)

    Google Scholar 

  • Love S, Coakham HB (2001) Trigeminal neuralgia. Pathology and pathogenesis. Brain 124:2347–2360

    CAS  PubMed  CrossRef  Google Scholar 

  • Lovick T, Bandler R (2005) The organization of the midbrain periaqueductal grey and the integration of pain behaviors. In: Hunt SP, Koltzenburg M (eds) The neurobiology of pain. Oxford University Press, Oxford, pp 267–287

    CrossRef  Google Scholar 

  • Lu Y, Perl ER (2005) Modular organization of excitatory circuits between neurons of the spinal superficial dorsal horn (laminae I and II). J Neurosci 25:3900–3907

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lüders H, Lesser RP, Dinner DS, Hahn JF, Salanga V, Morris HH (1985) The second sensory area in humans: evoked potential and electrical stimulation studies. Ann Neurol 17:177–184

    PubMed  CrossRef  Google Scholar 

  • Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor area (areas F5 and F4). Exp Brain Res 128:181–187

    CAS  PubMed  CrossRef  Google Scholar 

  • Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M et al (2007) Motor cortex stimulation for pain control induces changes in the endogeneous opioid system. Neurology 69:827–834

    CAS  PubMed  CrossRef  Google Scholar 

  • Maeda T, Kannari K, Sato O, Iwanaga T (1990) Nerve terminals in human periodontal ligament as demonstrated by immunohistochemistry for neurofilament protein (NFP) and S-100 protein. Arch Histol Cytol 53:259–265

    CAS  PubMed  CrossRef  Google Scholar 

  • Mai JK, Forutan F (2012) Thalamus. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 618–677

    CrossRef  Google Scholar 

  • Mai JK, Majtanik M, Paxinos G (2016) Atlas of the human brain, 4th edn. Academic/Elsevier, San Diego

    Google Scholar 

  • Mai JK, Majtanik M (2019) Towards a common terminology for the thalamus. Front Neuroanat 12:114

    Google Scholar 

  • Maldjian JA, Gottschalk A, Patel RS, Pincus D, Detre JA, Alsop DC (1999) Mapping of secondary somatosensory cortex activation induced by vibrational stimulation: an fMRI study. Brain Res 824:291

    CAS  PubMed  CrossRef  Google Scholar 

  • Manger PR, Woods TM, Jones EG (1995) Representation of the face and intraoral structures in area 3b of squirrel monkey (Saimiri sciureus) somatosensory cortex, with special reference to the ipsilateral representation. J Comp Neurol 363:597–607

    CrossRef  Google Scholar 

  • Manger PR, Woods TM, Jones EG (1996) Representation of face and intraoral structures in area 3b of macaque monkey somatosensory cortex. J Comp Neurol 371:513–521

    CAS  PubMed  CrossRef  Google Scholar 

  • Marani E, Schoen JHR (2005) A reappraisal of the ascending systems in man, with emphasis on the medial lemniscus. Adv Anat Embryol Cell Biol 179:1–76

    CAS  PubMed  CrossRef  Google Scholar 

  • Marfurt CF, Turner DF (1984) The central projections of tooth pulp afferent neurons in the rat as determined by the transganglionic transport of horseradish peroxidase. J Comp Neurol 223:535–547

    CAS  PubMed  CrossRef  Google Scholar 

  • Martins I, Tavares I (2017) Reticular formation and pain: the past and the future. Front Neuroanat 11:51

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Matelli M, Luppino G (2001) Parietofrontal circuits for action and space perception in the macaque monkey. NeuroImage 14:27–32

    CrossRef  Google Scholar 

  • Mazzola L, Isnard J, Mauguière F (2005) Somatosensory and pain responses to stimulation of the second somatosensory area (SII) in humans. A comparison with SI and insular responses. Cereb Cortex 16:960–968

    PubMed  CrossRef  Google Scholar 

  • Mazzola L, Isnard J, Peyron R, Guénot M, Maugière F (2009) Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 146:99–104

    CAS  PubMed  CrossRef  Google Scholar 

  • Mazzola L, Isnard J, Peyron R, Maugière F (2012) Stimulation of the human cortex and the experience of pain: Wilder Penfield’s observations revisited. Brain 135:631–650

    PubMed  CrossRef  Google Scholar 

  • McCarthy G, Allison T, Spencer DD (1993) Localization of the face area of human sensorimotor cortex by intracranial recording of somatosensory evoked potentials. J Neurosurg 79:874–884

    CAS  PubMed  CrossRef  Google Scholar 

  • McCloskey DI (1994) Human proprioceptive sensation. J Clin Neurosci 1:173–177

    CrossRef  Google Scholar 

  • McKleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856

    CrossRef  Google Scholar 

  • Medical Research Council (1943) Aids to the investigation of peripheral nerve lesions, 2nd ed. Her Majesty’s Stationary Office, London (reprinted 1975)

    Google Scholar 

  • Mehler WR (1962) The anatomy of the so-called “pain tract” in man: an analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW (eds) Basic research in paraplegia. Thomas, Springfield, pp 26–53

    Google Scholar 

  • Mehler WR (1966) The posterior thalamic region in man. Confin Neurol 27:18–29

    CAS  PubMed  CrossRef  Google Scholar 

  • Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83:718–750

    CAS  PubMed  CrossRef  Google Scholar 

  • Meissner G (1855) Bemerkungen die Tastkörperchen betreffend. Z Wiss Zool Abt A 6:296–297

    Google Scholar 

  • Melzack R, Casey KL (1968) Sensory, motivational, and central control determinants of pain. A new conceptual model. In: Kenshalo DR (ed) The skin senses. Thomas, Springfield, pp 423–439

    Google Scholar 

  • Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150:971–979

    CAS  PubMed  CrossRef  Google Scholar 

  • Merkel F (1875) Tastzellen und Tastkörperchen bei den Haustieren und beim Menschen. Arch Mikrosk Anat Entwmech 11:636–652

    CrossRef  Google Scholar 

  • Merzenich MM, Kaas JH, Sur M, Liu CS (1978) Double representation of the body surface within cytoarchitectural areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). J Comp Neurol 181:41–73

    CAS  PubMed  CrossRef  Google Scholar 

  • Mesulam M-M (2000) Attentional networks, confusional states, and neglect syndromes. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 174–256

    Google Scholar 

  • Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    CAS  PubMed  CrossRef  Google Scholar 

  • Mishkin M (1979) Analogous neural models for tactual and visual learning. Neuropsychologia 17:139–151

    CAS  PubMed  CrossRef  Google Scholar 

  • Miyamoto JJ, Honda M, Saito DN, Okada T, Ono T, Ohyama K, Sadato N (2006) The representation of the human oral area in the somatosensory cortex: a functional MRI study. Cereb Cortex 16:669–675

    PubMed  CrossRef  Google Scholar 

  • Moore CI, Stern CE, Corkin S, Fischl B, Gray AC, Rosen BR, Dale AM (2000) Segregation of somatosensory activation in the human rolandic cortex using fMRI. J Neurophysiol 84:558–569

    CAS  PubMed  CrossRef  Google Scholar 

  • Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630

    CAS  PubMed  CrossRef  Google Scholar 

  • Morin F (1955) A new spinal pathway for cutaneous impulses. Am J Phys 183:245–252

    CAS  CrossRef  Google Scholar 

  • Mountcastle VB (1984) Central nervous mechanisms in mechanoreceptive sensibility. In: Darian-Smith I (ed) Handbook of physiology, sect 1: the nervous system, Sensory processes, vol III. American Physiological Society, Bethesda, pp 789–878

    Google Scholar 

  • Mountcastle VB (2005) The sensory hand. Neural mechanisms of somatic sensation. Harvard University Press, Cambridge, MA

    CrossRef  Google Scholar 

  • Müller LJ, Vrensen GFJM, Pels L, Nunes Cardozo B, Willekens B (1997) Architecture of human corneal nerves. Invest Ophthalmol Vis Sci 38:985–994

    PubMed  Google Scholar 

  • Mumenthaler M, Stöhr M, Müller-Vahl H (2003) Läsionen peripherer Nerven und radikuläre Syndrome, 8. Aufl. Thieme, Stuttgart

    Google Scholar 

  • Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601

    CAS  PubMed  CrossRef  Google Scholar 

  • Murray EA, Mishkin M (1984a) Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J Neurosci 4:2565–2580

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Murray EA, Mishkin M (1984b) Relative contributions of S-II and area 5 to tactile discriminations in monkeys. Behav Brain Res 11:67–83

    CAS  PubMed  CrossRef  Google Scholar 

  • Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y et al (1998) Somatosensory homunculus as drawn by MEG. NeuroImage 7:377–386

    CAS  PubMed  CrossRef  Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Joint Surg Br 38:902–913

    PubMed  CrossRef  Google Scholar 

  • Napier JR (1960) Studies of the hands of living primates. Proc Zool Soc 134:647–657

    CrossRef  Google Scholar 

  • Napier JR (1980) Hands. Allen and Unwin, London

    Google Scholar 

  • Nathan PW (1976) The gate-control theory of pain. A critical review. Brain 99:123–158

    CAS  PubMed  CrossRef  Google Scholar 

  • Nathan PW, Smith MC, Cook AW (1986) Sensory effects in man of lesions of the posterior columns and of some other afferent pathways. Brain 109:1003–1041

    PubMed  CrossRef  Google Scholar 

  • Nathan PW, Smith M, Deacon P (2001) The crossing of the spinothalamic tract. Brain 124:793–803

    CAS  PubMed  CrossRef  Google Scholar 

  • Nelson RJ, Sur M, Felleman DJ, Kaas JH (1980) The representations of the body surface in postcentral somatosensory cortex in Macaca fascicularis. J Comp Neurol 192:611–643

    CAS  PubMed  CrossRef  Google Scholar 

  • Nijensohn DE, Kerr FWL (1975) The ascending projections of the dorsolateral funiculus of the spinal cord in the primate. J Comp Neurol 161:459–470

    CAS  PubMed  CrossRef  Google Scholar 

  • Nishikawa Y, Yoshimoto H, Mori A, Mukunoki S, Kakuda K, Yoshida Y (1999) Functional properties of nociceptive neurons in the nucleus centralis of the cat thalamus. J Osaka Dent Univ 33:65–73

    CAS  PubMed  Google Scholar 

  • Noback CR, Demarest RJ (1975) The nervous system, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Noordenbos W, Wall PD (1976) Diverse sensory functions with an almost totally divided spinal cord. A case of spinal cord transection with preservation of part of one anterolateral quadrant. Pain 2:185–195

    PubMed  CrossRef  CAS  Google Scholar 

  • Obermann M, Yoon M-S, Ese D, Maschke M, Kaube H, Diener H-C, Katsarava Z (2007) Impaired trigeminal nociceptive processing in patients with trigeminal neuralgia. Neurology 69:835–841

    CAS  PubMed  CrossRef  Google Scholar 

  • Ohye C, Fukamachi A, Narabayashi H (1972) Spontaneous and evoked activity of sensory neurons and their organization in the human thalamus. Z Neurol 203:219–234

    Google Scholar 

  • Ohye C, Shihazaki T, Hirai T, Kawashima Y, Hirato M, Matsumura K (1993) Tremor-mediated thalamic zone studied in humans and in monkeys. Stereotact Funct Neurosurg 6:12–23

    Google Scholar 

  • Olivecrona H (1942) Tractotomy for relief of trigeminal neuralgia. Arch Neurol Psychiatr 47:544–564

    CrossRef  Google Scholar 

  • Olszewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92:401–413

    CAS  PubMed  CrossRef  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel

    Google Scholar 

  • Ostrowsky K, Magnin M, Ryvlin P, Isnard J, Guénot M, Mauguière F (2002) Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 12:376–385

    PubMed  CrossRef  Google Scholar 

  • Paciaroni M, Bogouslavsky J (1998) Pure sensory syndromes in thalamic stroke. Eur Neurol 39:211–217

    CAS  PubMed  CrossRef  Google Scholar 

  • Padberg J, Krubitzer L (2006) Thalamocortical connections of anterior and posterior parietal cortical areas in New World titi monkeys. J Comp Neurol 497:416–435

    PubMed  CrossRef  Google Scholar 

  • Padberg J, Franca JG, Cooke DF, Soares JGM, Rosa MGP, Fiorani M et al (2007) Parallel evolution of cortical areas involved in skilled hand use. J Neurosci 27:10106–10115

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Paré M, Behets C, Cornu O (2003) Paucity of presumptive Ruffini corpuscles in the index finger pad of humans. J Comp Neurol 456:260–266

    PubMed  CrossRef  Google Scholar 

  • Pause M, Kunesch E, Binkofski F, Freund H-J (1989) Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain 112:1599–1625

    PubMed  CrossRef  Google Scholar 

  • Paxinos G, Huang X-F (1995) Atlas of the human brainstem. Academic, San Diego

    Google Scholar 

  • Pearson JC, Garfunkel DA (1983) Evidence for the thalamic projections from external cuneate nucleus, cell groups Z and X, and the mesencephalic nucleus of the trigeminal nerve in the squirrel monkey. Neurosci Lett 41:41–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    CrossRef  Google Scholar 

  • Penfield W, Jasper HH (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, Boston

    CrossRef  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New York

    Google Scholar 

  • Percheron G (2004) Thalamus. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 592–675

    CrossRef  Google Scholar 

  • Perl ER (1984) Pain and nociception. In: Darian-Smith I (ed) Handbook of physiology, sect 1: the nervous system, vol III: sensory processes. American Physiological Society, Bethesda, pp 915–975

    Google Scholar 

  • Perl ER (1996a) Cutaneous polymodal receptors: characteristics and plasticity. Prog Brain Res 113:21–37

    CAS  PubMed  CrossRef  Google Scholar 

  • Perl ER (1996b) Pain and the discovery of nociceptors. In: Belmonte C, Cervero F (eds) Neurobiology of nociceptors. Oxford University Press, Oxford, pp 5–36

    Google Scholar 

  • Perl ER (1998) Getting a line on pain: is it mediated by dedicated pathways? Nat Neurosci 1:177–178

    CAS  PubMed  CrossRef  Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2000) Placebo and opioid analgesia-imaging: a shared neuronal network. Science 295:1737–1740

    CrossRef  Google Scholar 

  • Peyron R, Frot M, Schneider F, Garcia-Larrea L, Mertens P, Barral FG et al (2002) Role of operculoinsular cortices in human pain processing: converging evidence from PET, fMRI, dipole modeling, and intracerebral recordings of evoked potentials. NeuroImage 17:1336–1346

    CAS  PubMed  CrossRef  Google Scholar 

  • Ploner M, Freund H-J, Schnitzler A (1999a) Pain affect without pain sensation in a patient with a postcentral lesion. Pain 81:211–214

    CAS  PubMed  CrossRef  Google Scholar 

  • Ploner M, Schmitz F, Freund H-J, Schnitzler A (1999b) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104

    CAS  PubMed  CrossRef  Google Scholar 

  • Ploner M, Schmitz F, Freund H-J, Schnitzler A (2000) Differential organization of touch and pain in human primary somatosensory cortex. J Neurophysiol 83:1770–1776

    CAS  PubMed  CrossRef  Google Scholar 

  • Poggio GF, Mountcastle VB (1960) A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility: central nervous mechanisms in pain. Bull Johns Hopkins Hosp 106:260–316

    Google Scholar 

  • Poggio GF, Mountcastle VB (1963) The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J Neurophysiol 26:775–806

    CAS  PubMed  CrossRef  Google Scholar 

  • Polo G, Mertens P, Sindou M (2015) Spinal cord stimulation for intractable pain. In: Itakura T (ed) Deep brain stimulation in neurological disorders. Springer, Cham, pp 157–168

    Google Scholar 

  • Polonara G, Fabri M, Manzona T, Salvelini U (1999) Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. AJNR Am J Neuroradiol 20:199–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pompeiano O, Brodal A (1957) Spino-vestibular fibers in the cat. An experimental study. J Comp Neurol 108:353–378

    CAS  PubMed  CrossRef  Google Scholar 

  • Pons TP, Kaas JH (1986) Corticocortical connections of area 2, 1 and 5 of somatosensory cortex in macaque monkeys: a correlative and electrophysiological study. J Comp Neurol 248:313–335

    CAS  PubMed  CrossRef  Google Scholar 

  • Price DD, Dubner R, Hu JW (1976) Trigeminothalamic neurons in nucleus caudalis responsive to tactile, thermal, and nociceptive stimulation of monkey’s face. J Neurophysiol 39:936–953

    CAS  PubMed  CrossRef  Google Scholar 

  • Qi H-X, Lyon DC, Kaas JH (2002) Cortical and thalamic connections of the parietal ventral somatosensory area in marmoset monkeys (Callithrix jacchus). J Comp Neurol 443:168–182

    PubMed  CrossRef  Google Scholar 

  • Quensel F (1898) Ein Fall von Sarcom der Dura spinalis. Beitrag zur Kenntnis der secundären Degenerationen nach Rückenmarkcompression. Neurol Zbl 17:482–493

    Google Scholar 

  • Rademacher R, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2231–2258

    CrossRef  Google Scholar 

  • Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277:968–971

    CAS  PubMed  CrossRef  Google Scholar 

  • Raja SN, Meyer RA, Ringkamp M, Campbell JN (1999) Peripheral neural mechanisms of nociception. In: Wall PD, Melzack R (eds) Textbook of pain, 3rd edn. Churchill Livingstone, Edinburgh, pp 1–47

    Google Scholar 

  • Randolph M, Semmes J (1974) Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. Brain Res 70:55–70

    CAS  PubMed  CrossRef  Google Scholar 

  • Rath EM, Essick GK (1990) Perioral somesthetic sensibility: do the skin of the lower face and the midface exhibit comparable sensibility? J Oral Maxillofacial Surg 48:1181–1190

    CAS  CrossRef  Google Scholar 

  • Rausell E, Jones EG (1991a) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci 11:210–225

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rausell E, Jones EG (1991b) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci 11:226–255

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Reed CL, Caselli RJ, Farah MJ (1996) Tactile agnosia: underlying impairment and implications for normal tactile object recognition. Brain 119:875–888

    PubMed  CrossRef  Google Scholar 

  • Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by frontal brain stimulation. Science 164:444–445

    CAS  PubMed  CrossRef  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141

    CAS  CrossRef  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    CAS  PubMed  CrossRef  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2002) Motor and cognitive functions of the ventral premotor cortex. Curr Opin Neurobiol 12:149–154

    CAS  PubMed  CrossRef  Google Scholar 

  • Robbins WR, Staats PS, Levine J et al (1998) Treatment of intractable pain with topical large-dose capsaicin: preliminary report. Anesthesiol Analg 86:579–583

    CAS  CrossRef  Google Scholar 

  • Roland PE (1987a) Somatosensory detection of microgeometry, macrogeometry and kinesthesia after localized lesions of the cerebral hemispheres in man. Brain Res Rev 12:43–94

    CrossRef  Google Scholar 

  • Roland PE (1987b) Somatosensory detection in patients with circumscribed lesions of the brain. Exp Brain Res 66:303–317

    CAS  PubMed  CrossRef  Google Scholar 

  • Rondot P, de Recondo J, Ribadeau Dumas JL (1977) Visuomotor ataxia. Brain 100:355–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Rossetti Y, Vighetto A, Pisella L (2003) Optic ataxia revisited: immediate motor control versus visually guided action. Exp Brain Res 153:171–179

    PubMed  CrossRef  Google Scholar 

  • Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor performance in a deafferented man. Brain 105:515–542

    PubMed  CrossRef  Google Scholar 

  • Ruffini A (1894) Sur un nouvel organe nerveux terminal et sur la présence des corpuscles, Golgi-Mazzoni, dans la conjunctif sous-cutane de la pulpe des doigts de l’homme. Arch Ital Biol 21:249

    Google Scholar 

  • Rustioni A, Hayes NL, O’Neill S (1979) Dorsal column nuclei of rhesus monkeys. Science 196:656–658

    CrossRef  Google Scholar 

  • Sacco RL, Bello JA, Traub R, Brust JC (1987) Selective proprioceptive loss from a thalamic lacunar stroke. Stroke 18:1160–1163

    CAS  PubMed  CrossRef  Google Scholar 

  • Sadjadpour K, Brodal A (1968) The vestibular nuclei in man. A morphological study in the light of experimental findings in the cat. J Hirnforsch 10:299–323

    CAS  PubMed  Google Scholar 

  • Saitoh Y, Shibata Y, Mashimo T (1999) Motor cortex stimulation for phantom limb pain. Lancet 353:212

    CAS  PubMed  CrossRef  Google Scholar 

  • Sakai K, Watanabe E, Onodura Y, Itagaki H, Yamamoto E, Koizumi H, Miyashita Y (1995) Functional mapping of the human somatosensory cortex with echo-planar MRI. Magnet Res Med 33:736–743

    CAS  CrossRef  Google Scholar 

  • Sakata H (2003) The role of the parietal cortex in grasping. Adv Neurol 93:121–139

    PubMed  Google Scholar 

  • Sakata H, Taira M, Murata A, Mine S (1995) Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb Cortex 5:429–438

    CAS  PubMed  CrossRef  Google Scholar 

  • Sakata H, Taira M, Kusunoki M (1997) The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci 20:350–357

    CAS  PubMed  CrossRef  Google Scholar 

  • Sastre-Janer FA, Regis J, Belin P, Mangin JF, Dormont D, Masure MC et al (1998) Three-dimensional reconstruction of the human central sulcus reveals a morphological correlate in the hand area. Cereb Cortex 8:641

    CAS  PubMed  CrossRef  Google Scholar 

  • Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278

    PubMed  CrossRef  Google Scholar 

  • Schmahmann JD, Leifer D (1992) Parietal pseudothalamic pain syndrome: clinical features and anatomic correlates. Arch Neurol 49:1032–1037

    CAS  PubMed  CrossRef  Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergebn Physiol 63:20–101

    CAS  PubMed  Google Scholar 

  • Schnitzler A, Seitz R, Freund H-J (2000) The somatosensory system. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic, San Diego, pp 291–329

    CrossRef  Google Scholar 

  • Schoenen J, Faull RJM (2004) Spinal cord: cytoarchitectural, dendroarchitectural, and myeloarchitectural organization. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 190–232

    CrossRef  Google Scholar 

  • Schults RC (1992) Nociceptive neural organization in the trigeminal nuclei. In: Light AR, Schults RC, Jones SL (eds) The initial processing of pain and its descending control: spinal and trigeminal systems. Karger, Basel, pp 178–202

    Google Scholar 

  • Seike M (1993) A study of the area of distribution of the deep sensory neurons of the human thalamus. Stereotact Funct Neurosurg 61:12–23

    CAS  PubMed  CrossRef  Google Scholar 

  • Seitz R, Binkofski F (2003) Modular organization of parietal lobe functions as revealed by functional activation studies. Adv Neurol 93:281–292

    PubMed  Google Scholar 

  • Semmes J, Weinstein S, Ghent L, Teuber HL (1960) Somatosensory change after penetrating brain wounds in man. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Sessle BJ (2000) Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med 11:57–91

    CAS  PubMed  CrossRef  Google Scholar 

  • Sharav Y, Leviner E, Trukert A, McGrath PA (1984) The spatial distribution, intensity and unpleasantness of acute dental pain. Pain 20:363–370

    CAS  PubMed  CrossRef  Google Scholar 

  • Sherrington CS (1898) Experiments in examination of the peripheral distribution of the fibres of the posterior roots of some spinal nerves. II. (Croonian Lecture). Phil Trans B 190:45–186

    Google Scholar 

  • Sherrington CS (1900) Cutaneous sensations. In: Schäfer EA (ed) Textbook of physiology. Pentland, Edinburgh, pp 920–1001

    Google Scholar 

  • Shintani S (1998) Clinical-radiological correlations in pure sensory stroke. Neurology 51:297–302

    CAS  PubMed  CrossRef  Google Scholar 

  • Siddall PJ, McClelland JM, Rutkovsky SB, Cousins MJ (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103:249–257

    PubMed  CrossRef  Google Scholar 

  • Sindou M (1995) Microsurgical DREZotomy (MDT) for pain: spasticity and hyperactive bladder: a 20-year experience. Acta Neurochir 137:1–5

    CAS  PubMed  CrossRef  Google Scholar 

  • Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cord-rootlet junction in man. J Comp Neurol 153:15–26

    CAS  PubMed  CrossRef  Google Scholar 

  • Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    CAS  PubMed  CrossRef  Google Scholar 

  • Sjöqvist O (1938) Studies on the pain conduction in the trigeminal nerve. A contribution to surgical treatment of facial pain. Acta Psychiatr Scand (Suppl) 17:1–139

    Google Scholar 

  • Smith RL (1975) Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J Comp Neurol 163:347–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith MC, Deacon P (1984) Topographical anatomy of the posterior columns of the spinal cord in man. The long ascending fibres. Brain 107:671–698

    PubMed  CrossRef  Google Scholar 

  • Snyder R (1977) The organization of the dorsal root entry zone in cats and monkeys. J Comp Neurol 174:47–70

    CAS  PubMed  CrossRef  Google Scholar 

  • Spiller WG (1905) The occasional clinical resemblance between caries of the vertebrae and lumbothoracic syringomyelia, and the location within the spinal cord of the fibres for the sensations of pain and temperature. Univ Penn Med Bull 18:147–154

    Google Scholar 

  • Spiller WG, Martin E (1912) The treatment of persistent pain of organic origin in the lower part of the body by division of the anterolateral column of the spinal cord. JAMA 58:1489–1490

    CrossRef  Google Scholar 

  • Spitzer A (1899) Ein Fall von Tumor am Boden der Rautengrube. Beitrag zur Kenntnis des hinteren Längsbündels. Arb Inst Anat Physiol Centralnervensyst Univ Wien 6:1–58

    Google Scholar 

  • Stöhr M, Petruch F (1979) Somatosensory evoked potentials following stimulation of the trigeminal nerve in man. J Neurol 220:95–98

    PubMed  CrossRef  Google Scholar 

  • Strigo IA, Craig AD (2016) Interoception, homeostatic emotions and sympathovagal balance. Phil Trans R Soc B 371:20160010

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sur M, Wall JT, Kaas JH (1984) Modular distribution of neurons with slowly adapting and rapidly adapting responses in area 3b of somatosensory cortex in monkeys. J Neurophysiol 51:724–744

    CAS  PubMed  CrossRef  Google Scholar 

  • Suzuki R, Rygh LJ, Dickenson AH (2004) Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25:613–617

    CAS  PubMed  CrossRef  Google Scholar 

  • Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projections of primary afferents innervating facial and intraoral structures in the rat. Exp Neurol 111:324–331

    CAS  PubMed  CrossRef  Google Scholar 

  • Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31:301–334

    CAS  PubMed  CrossRef  Google Scholar 

  • Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH (1991) Multiple representations of pain in the human cerebral cortex. Science 251:1355–1361

    CAS  PubMed  CrossRef  Google Scholar 

  • Tasker RR (1990) Management of nociceptive, deafferentation and central pain by surgical intervention. In: Fields HL (ed) Pain syndromes in neurology. Butterworth-Heinemann, Edinburgh, London, pp 143–200

    CrossRef  Google Scholar 

  • Tasker RR, Organ LW, Rose IH, Hawrylyshin P (1976) Human spinothalamic tract – stimulation mapping in the spinal cord and brain stem. Adv Pain Res Ther 1:252–257

    Google Scholar 

  • ten Donkelaar HJ, Hori A (2006) Development and developmental disorders of the spinal cord. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system. Springer, Berlin-Heidelberg-New York, pp 229–268

    CrossRef  Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141. (in Dutch)

    Google Scholar 

  • ten Donkelaar HJ, Itoh K, Hori A (2014) Development and developmental disorders of the spinal cord. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 271–320

    Google Scholar 

  • ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlijk D (2017) Towards a terminologia neuroanatomica. Clin Anat 30:145–155

    PubMed  CrossRef  Google Scholar 

  • ten Donkelaar HJ, Kachlik, Tubbs RS (2018) An illustrated terminologia neuroanatomica. A concise encyclopedia of human neuroanatomy. Springer, Cham

    Google Scholar 

  • Thomas PK, Ochoa JL (1993) Clinical features and differential diagnosis. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. Saunders, Philadelphia, pp 756–764

    Google Scholar 

  • TNA (2017) Terminologia Neuroanatomica. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology

    Google Scholar 

  • Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 11:823–836

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Todd AJ (2017) Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain 13:1–19

    CrossRef  Google Scholar 

  • Torebjörk HE, Hallin RG (1973) Perceptual changes accompanying controlled preferential blocking of A and C fibre responses in intact human skin nerves. Exp Brain Res 16:321–332

    PubMed  CrossRef  Google Scholar 

  • Torebjörk HE, Ochoa JL (1990) New method to identify nociceptor units innervating glabrous skin of the human hand. Exp Brain Res 81:509–514

    PubMed  CrossRef  Google Scholar 

  • Torebjörk HA, Vallbo ÅB, Ochoa JL (1987) Intraneural microstimulation in man. Its relation to specificity of tactile sensations. Brain 110:1509–1529

    PubMed  CrossRef  Google Scholar 

  • Torebjörk HA, Schmeltz M, Handwerker HO (1996) Functional properties of human cutaneous nociceptors and their role in pain and hyperalgesia. In: Belmonte C, Cervero F (eds) Neurobiology of nociceptors. Oxford University Press, Oxford, pp 349–369

    Google Scholar 

  • Tracey I (2005) Nociceptive processing in the brain. Curr Opin Neurobiol 15:478–487

    CAS  PubMed  CrossRef  Google Scholar 

  • Trevino DL (1976) The origin and projections of a spinal nociceptive and thermoreceptive pathway. In: Zotterman Y (ed) Sensory functions of the skin. Pergamon, Oxford, pp 367–377

    CrossRef  Google Scholar 

  • Truex RC, Taylor MJ, Smythe MQ (1968) The lateral cervical nucleus of the human spinal cord. Anat Rec 160:443–461

    Google Scholar 

  • Truex RC, Taylor MJ, Smythe MQ, Gildenberg PL (1970) The lateral cervical nucleus of the cat, dog, and man. J Comp Neurol 139:93–104

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsubokawa T, Moriyasu N (1975) Follow-up results of centre median thalamotomy for relief of intractable pain. A new method of evaluating the effectiveness during operation. Confin Neurol 37:280–284

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S (1991) Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir 52(Suppl):131–139

    Google Scholar 

  • Tunik E, Rice NJ, Hamilton A, Grafton ST (2007) Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage 36:T77–T86

    PubMed  CrossRef  Google Scholar 

  • Usunoff KG, Marani E, Schoen JHR (1997) The trigeminal system in man. Adv Anat Embryol Cell Biol 136:1–126

    CrossRef  Google Scholar 

  • Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B et al (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109:399–408

    PubMed  CrossRef  Google Scholar 

  • Vallar G, Bottini G, Paulesu E (2003) Neglect syndromes: the role of parietal cortex. Adv Neurol 93:293–319

    PubMed  Google Scholar 

  • Vallbo ÅB, Johansson RS (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3:3–14

    CAS  PubMed  Google Scholar 

  • Vallbo ÅB, Hagbarth K-E, Torebjörk HE, Wallin BG (1979) Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev 59:919–957

    CAS  PubMed  CrossRef  Google Scholar 

  • Vallbo ÅB, Olsson KA, Westberg KG, Clark FJ (1984) Microstimulation of single tactile afferents from the human hand. Brain 107:727–749

    PubMed  CrossRef  Google Scholar 

  • van Alfen N (2006) Neuralgic amyotrophy. Thesis, Radboud University Nijmegen

    Google Scholar 

  • van Alfen N, van Engelen BGM (1997) Lumbosacral plexus neuropathy: a case report and review of the literature. Clin Neurol Neurosurg 99:138–141

    PubMed  CrossRef  Google Scholar 

  • van Alfen N, van Engelen BGM (2006) The clinical spectrum of neuralgic amyotrophy in 246 cases. Brain 129:438–450

    PubMed  CrossRef  Google Scholar 

  • Van Buren JM, Borke RC (1972) Variations and connections of the human thalamus, vol 1. Springer, Berlin-Heidelberg-New York

    CrossRef  Google Scholar 

  • Van Buren JM, Borke RC, Modesti LM (1976) Sensory and nonsensory portions of the nucleus “ventralis posterior” thalami of chimpanzee and man. J Neurosurg 45:37–48

    PubMed  CrossRef  Google Scholar 

  • van Dijk GW (1998) Sensory and ataxic neuropathy. Thesis, University of Utrecht

    Google Scholar 

  • Van Hees J, Gybels JM (1972) Pain related to single afferent C fibres from human skin. Brain Res 48:397–400

    PubMed  CrossRef  Google Scholar 

  • Van Hees J, Gybels J (1981) C nociceptor activity in human nerve during painful and non-painful skin stimulation. J Neurol Neurosurg Psychiatry 44:600–607

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vega-Bermudez F, Johnson KO (1999) SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. J Neurophysiol 81:2701–2710

    CAS  PubMed  CrossRef  Google Scholar 

  • Verdugo RJ, Campero M, Castillo JL, Cea G (2007) Pain and temperature. In: Goetz CG (ed) Textbook of clinical neurology, 3rd edn. Saunders, Philadelphia, pp 363–381

    CrossRef  Google Scholar 

  • Vestergaard K, Nielsen J, Andersen G, Ingeman-Nielsen M, Arendt-Nielsen L, Jensen TS (1995) Sensory abnormalities in consecutive unselected patients with central post-stroke pain. Pain 61:177–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Vierck CJ Jr, Cooper BY (1998) Cutaneous texture discrimination following transection of the dorsal spinal column in monkeys. Somatosens Mot Res 15:309–315

    PubMed  CrossRef  Google Scholar 

  • Villanueva L, Bernard JF (1999) The multiplicity of ascending pain pathways. In: Handbook of behavioral state control: cellular and molecular mechanisms. CRC Press, New York, pp 569–585

    Google Scholar 

  • Vogt BA (2005) Pain and emotion. Interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533–544

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vogt BA, Sikes RW (2000) The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res 122:223–235

    CAS  PubMed  CrossRef  Google Scholar 

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Physiol Neurol (Lpz) 25:279–461

    Google Scholar 

  • Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270

    CAS  PubMed  CrossRef  Google Scholar 

  • Vogt BA, Berger GR, Derbyshire SW (2003) Structural and functional dichotomy of human midcingulate cortex. Eur J Neurosci 18:3134–3144

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien

    Google Scholar 

  • Voris HC (1951) Ipsilateral sensory loss following chordotomy: report of a case. Arch Neurol Psychiatr 65:95–96

    CrossRef  Google Scholar 

  • Voris HC (1957) Variations in the spinothalamic tract in man. J Neurosurg 14:55–60

    CAS  PubMed  CrossRef  Google Scholar 

  • Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ et al (2004) Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303:1162–1167

    CAS  PubMed  CrossRef  Google Scholar 

  • Waite PME, Ashwell KWS (2004) Trigeminal sensory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1093–1124

    CrossRef  Google Scholar 

  • Walker AE, Weaver TA (1942) The topical organization and termination of the fibers of the posterior columns in Macaca mulatta. J Comp Neurol 76:145–158

    CrossRef  Google Scholar 

  • Wall PD (1967) The laminar organisation of dorsal horn and effects of descending inputs. J Physiol Lond 188:403–423

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wall PD (1970) The sensory and motor role of impulses travelling in the dorsal columns towards cerebral cortex. Brain 93:505–524

    CAS  PubMed  CrossRef  Google Scholar 

  • Wall PD, Noordenbos W (1977) Sensory functions which remain in man after complete transection of dorsal columns. Brain 100:641–653

    CAS  PubMed  CrossRef  Google Scholar 

  • Wallenberg A (1895) Acute Bulbäraffection (Embolie der Arteria cerebelli posterior inferior). Arch Psychiatr Nervenkrankh 27:504–540

    CrossRef  Google Scholar 

  • Wallenberg A (1901) Anatomischer Befund in einem als “acute Bulbäraffektion (Embolie der Arteria cerebelli posterior inferior)” beschriebenen Falle. Arch Psychiatr Nervenkrankh 34:923–959

    CrossRef  Google Scholar 

  • Wasner G, Lee BB, Engel S, McLachlan E (2008) Residual spinothalamic tract pathways predict development of central pain after spinal cord injury. Brain 131:2387–2400

    PubMed  CrossRef  Google Scholar 

  • Weisberg JA, Rustioni A (1977) Cortical cells projecting to the dorsal column nuclei of rhesus monkeys. Exp Brain Res 28:521–528

    CAS  PubMed  CrossRef  Google Scholar 

  • Westling G, Johansson RS (1987) Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res 66:128–140

    CAS  PubMed  CrossRef  Google Scholar 

  • White JC, Sweet WH (1969) Pain and the neurosurgeon: a forty-year experience. Thomas, Springfield

    Google Scholar 

  • White JC, Sweet WH, Hawkins R, Nilges RG (1950) Anterolateral cordotomy: results, complications and causes of failure. Brain 73:346–367

    CAS  PubMed  CrossRef  Google Scholar 

  • White JC, Richardson EP, Sweet WH (1956) Upper thoracic cordotomy for relief of pain. Postmortem correlation of spinal incision with analgesic levels in 18 cases. Ann Surg 144:407–420

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997a) Structure of the human sensorimotor system. I. Morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:18–30

    CAS  PubMed  CrossRef  Google Scholar 

  • White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997b) Ibid. II. Lateral symmetry. Cereb Cortex 7:31–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Whitsel BL, Petrucelli LM, Sapiro G (1969) Modality representation in the lumbar and cervical fasciculus gracilis of squirrel monkeys. Brain Res 15:67–78

    CAS  PubMed  CrossRef  Google Scholar 

  • Wiberg M, Westman J, Blomqvist A (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264:92–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Wiesendanger M, Miles TS (1982) Ascending pathway of low-theshold muscle afferents to the cerebral cortex and its possible role in motor control. Physiol Rev 62:1234–1270

    CAS  PubMed  CrossRef  Google Scholar 

  • Wilbourn AJ (1993) Brachial plexus disorders. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds) Peripheral neuropathy, 3rd edn. Saunders, Philadelphia, pp 933–950

    Google Scholar 

  • Willis WD, Coggeshall RE (1991) Sensory mechanisms of the spinal cord, 2nd edn. Plenum, New York

    CrossRef  Google Scholar 

  • Willis WD, Westlund KN (1997) Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol 14:2–31

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Willis WD, Westlund KN (2004) Pain system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1125–1170

    CrossRef  Google Scholar 

  • Willis WD, Kenshalo DR, Leonard RB (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188:543–574

    CAS  PubMed  CrossRef  Google Scholar 

  • Willis WD, Al-Chaer ED, Quast MJ, Westlund KN (1999) A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci U S A 96:7675–7679

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Willis WD, Zhang X, Honda CN, Giesler GJ Jr (2001) Projections from the marginal zone and deep dorsal horn to the ventrobasal nuclei of the primate thalamus. Pain 92:267–276

    PubMed  CrossRef  Google Scholar 

  • Willis WD, Zhang X, Honda CN, Giesler GJ Jr (2002) A critical review of the role of the proposed VMpo in pain. J Pain 3:79–94

    PubMed  CrossRef  Google Scholar 

  • Willoch F, Schindler F, Wester HJ, Empl M, Straube A, Schwaiger M et al (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C] diprenorphine PET study. Pain 108:213–220

    CAS  PubMed  CrossRef  Google Scholar 

  • Winkler C (1918) Manuel de Neurologie. Tome 1: Anatomie du Système Nerveux. Bohn, Haarlem, pp 178–198

    Google Scholar 

  • Wokke JHJ, van Dijk GW (1997) Sensory neuropathies including painful and toxic neuropathies. J Neurol 244:209–221

    CAS  PubMed  CrossRef  Google Scholar 

  • Woods TM, Cusick CG, Pons TP, Taub E, Jones EG (1999) Progressive transneuronal changes in the brainstem and thalamus after long-term dorsal rhizotomies in adult macaque monkeys. J Neurosci 15:3884–3899

    Google Scholar 

  • Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin Press, Madison, pp 63–81

    Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506

    CAS  PubMed  CrossRef  Google Scholar 

  • Young RF (1982) Effects of trigeminal tractotomy on dental sensation in humans. J Neurosurg 56:812–813

    CAS  PubMed  CrossRef  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi K, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157

    PubMed  CrossRef  Google Scholar 

  • Zainos A, Merchant H, Hernandez A, Salinas E, Romo R (1997) Role of primary sensory cortex in categorization of tactile stimuli: effects of lesions. Exp Brain Res 115:357–360

    CAS  PubMed  CrossRef  Google Scholar 

  • Zambreanu L, Wise RG, Brooks JC, Iannetti GD, Tracey I (2005) A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 114:397–407

    CAS  PubMed  CrossRef  Google Scholar 

  • Zemlan FP, Behbehani MM (1988) Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 453:89–102

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang ET, Craig AD (1997) Morphology and distribution of spinothalamic lamina I neurons in the monkey. J Neurosci 17:3274–3284

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhang X, Wenk HN, Gokin AP, Honda CN, Giesler GJ Jr (1999) Physiological studies of spinohypothalamic tract neurons in the lumbar enlargement of monkeys. J Neurophysiol 82:1054–1058

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang X, Honda CN, Giesler GJ Jr (2000a) Position of spinothalamic tract axons in upper cervical spinal cord of monkeys. J Neurophysiol 84:1180–1185

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang X, Wenk HN, Honda CN, Giesler GJ Jr (2000b) Locations of spinothalamic tract axons in cervical and thoracic spinal cord white matter in monkeys. J Neurophysiol 83:2869–2880

    CAS  PubMed  CrossRef  Google Scholar 

  • Zilles K (2004) Architecture of the human cerebral cortex. Regional and laminar organization. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 997–1055

    CrossRef  Google Scholar 

  • Zilles K, Amunts K (2012) Architecture of the human cerebral cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 836–895

    CrossRef  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. NeuroImage 14:S8–S20

    CAS  PubMed  CrossRef  Google Scholar 

  • Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher M, Qü M et al (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic transmitter receptor, MRI and PET data. J Anat (Lond) 187:515–537

    CAS  Google Scholar 

  • Zilles K, Eickhoff S, Palomero-Gallagher N (2003) The human parietal cortex: a novel approach to its architectonic mapping. Adv Neurol 93:1–21

    PubMed  Google Scholar 

  • Zimny ML (1988) Mechanoreceptors in articular tissues. Am J Anat 182:16–32

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

ten Donkelaar, H.J., Broman, J., van Domburg, P. (2020). The Somatosensory System. In: Clinical Neuroanatomy. Springer, Cham. https://doi.org/10.1007/978-3-030-41878-6_4

Download citation