Skip to main content

Resting-State fMRI: Preclinical Foundations

  • Chapter
  • First Online:
fMRI

Abstract

This chapter introduces a neuroimaging approach that has become popular among scientists over the last decade and that now is starting to attain clinical uses. The technique is called resting-state functional connectivity (RSFC), and it typically utilizes functional magnetic resonance imaging (fMRI) scans collected from subjects at rest (i.e., doing nothing) in the scanner. This chapter covers how the data are collected, processed, and turned into measures of brain organization. Some preliminary clinical uses of RSFC are presented. The priority of the chapter is not to broadly survey the field but instead to help readers better understand and more critically assess studies using RSFC techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90–101

    Article  PubMed  Google Scholar 

  • Birn RM, Smith MA, Jones TB, Bandettini PA (2008) The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage 40(2):644–654

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  • Bowden SG, Gill BJA, Englander ZK, Horenstein CI, Zanazzi G, Chang PD et al (2018) Local glioma cells are associated with vascular dysregulation. AJNR Am J Neuroradiol 39(3):507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulte D, Wartolowska K (2017) Monitoring cardiac and respiratory physiology during FMRI. NeuroImage 154:81–91

    Article  PubMed  Google Scholar 

  • Burgess GC, Kandala S, Nolan D, Laumann TO, Power JD, Adeyemo B et al (2016) Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human Connectome Project. Brain Connect 6(9):669–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Chow DS, Horenstein CI, Canoll P, Lignelli A, Hillman EM, Filippi CG et al (2016) Glioblastoma induces vascular dysregulation in nonenhancing peritumoral regions in humans. AJR Am J Roentgenol 206(5):1073–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K et al (2017) Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154:174–187

    Article  PubMed  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH et al (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21(9):1636–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A 104(26):11073–11078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

    Article  CAS  PubMed  Google Scholar 

  • Englander ZK, Horenstein CI, Bowden SG, Chow DS, Otten ML, Lignelli A et al (2018) Extent of BOLD vascular dysregulation is greater in diffuse gliomas without isocitrate dehydrogenase 1 R132H mutation. Radiology 287(3):965–972

    Article  PubMed  Google Scholar 

  • Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM et al (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Comput Biol 5(5):e1000381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355

    Article  CAS  PubMed  Google Scholar 

  • Glover GH, Li TQ, Ress D (2000) Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167

    Article  CAS  PubMed  Google Scholar 

  • Gordon EM, Laumann TO, Gilmore AW, Newbold DJ, Greene DJ, Berg JJ et al (2017) Precision functional mapping of individual human brains. Neuron 95(4):791–807. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100(1):253–258

    Article  CAS  PubMed  Google Scholar 

  • Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW (2010) Mapping sources of correlation in resting state FMRI, with artifact detection and removal. NeuroImage 52(2):571–582

    Article  PubMed  Google Scholar 

  • Kelly AM, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT et al (2009) Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19(3):640–657

    Article  PubMed  Google Scholar 

  • Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen MY et al (2015) Functional System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron 87(3):657–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TT (2017) Reprint of ‘noise contributions to the fMRI signal: an overview’. NeuroImage 154:4–14

    Article  PubMed  Google Scholar 

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage 7(2):119–132

    Article  CAS  PubMed  Google Scholar 

  • Marcus DS, Harms MP, Snyder AZ, Jenkinson M, Wilson JA, Glasser MF et al (2013) Human Connectome Project informatics: quality control, database services, and data visualization. NeuroImage 80:202–219

    Article  PubMed  Google Scholar 

  • Murphy K, Birn RM, Bandettini PA (2013) Resting-state fMRI confounds and cleanup. NeuroImage 80:349–359

    Article  PubMed  Google Scholar 

  • Oakes TR, Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS et al (2005) Comparison of fMRI motion correction software tools. NeuroImage 28(3):529–543

    Article  CAS  PubMed  Google Scholar 

  • Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen MY et al (2015) Long-term neural and physiological phenotyping of a single human. Nat Commun 6:8885

    Article  CAS  PubMed  Google Scholar 

  • Power JD (2017) A simple but useful way to assess fMRI scan qualities. NeuroImage 154:150–158

    Article  PubMed  Google Scholar 

  • Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA et al (2011) Functional network organization of the human brain. Neuron 72(4):665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3):2142–2154

    Article  PubMed  Google Scholar 

  • Power JD, Schlaggar BL, Petersen SE (2015) Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage 105:536–551

    Article  PubMed  Google Scholar 

  • Power JD, Plitt M, Laumann TO, Martin A (2017a) Sources and implications of whole-brain fMRI signals in humans. NeuroImage 146:609–625

    Article  PubMed  Google Scholar 

  • Power JD, Plitt M, Kundu P, Bandettini PA, Martin A (2017b) Temporal interpolation alters motion in fMRI scans: magnitudes and consequences for artifact detection. PLoS One 12(9):e0182939

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Power JD, Plitt M, Gotts SJ, Kundu P, Voon V, Bandettini PA et al (2018) Ridding fMRI data of motion-related influences: removal of signals with distinct spatial and physical bases in multiecho data. Proc Natl Acad Sci U S A 115(9):E2105–E2E14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF (2015) ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112:267–277

    Article  PubMed  Google Scholar 

  • Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM (2014) Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90:449–468

    Article  PubMed  Google Scholar 

  • Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H et al (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage 60(1):623–632

    Article  PubMed  Google Scholar 

  • Satterthwaite TD, Wolf DH, Ruparel K, Erus G, Elliott MA, Eickhoff SB et al (2013) Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth. NeuroImage 83:45–57

    Article  PubMed  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9(5):648–663

    Article  CAS  PubMed  Google Scholar 

  • Siegel JS, Mitra A, Laumann TO, Seitzman BA, Raichle M, Corbetta M et al (2016) Data quality influences observed links between functional connectivity and behavior. Cereb Cortex 27(9):4492–4502

    Article  PubMed Central  Google Scholar 

  • Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tagliazucchi E, Laufs H (2014) Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82(3):695–708

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103(1):297–321

    Article  PubMed  Google Scholar 

  • Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59(1):431–438

    Article  PubMed  Google Scholar 

  • Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage 76:183–201

    Article  PubMed  Google Scholar 

  • Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  PubMed  Google Scholar 

  • Zaitsev M, Akin B, LeVan P, Knowles BR (2017) Prospective motion correction in functional MRI. NeuroImage 154:33–42

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Julie Penzner, Meredith Pittman, and Thomas Pearce for their comments on the manuscript. J.D.P. is supported by a gift from the Mortimer D. Sackler, MD, family.

Conflict of Interest: The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Power .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Power, J.D. (2020). Resting-State fMRI: Preclinical Foundations. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Cham. https://doi.org/10.1007/978-3-030-41874-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41874-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41873-1

  • Online ISBN: 978-3-030-41874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics