Skip to main content

Combining Transcranial Magnetic Stimulation with (f)MRI

  • Chapter
  • First Online:
fMRI

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive and painless tool for the electrical stimulation of the human cortex. TMS depolarizes cortical neurons and can evoke measurable electrophysiological and behavioral effects. TMS is usually applied to one cortical area but can also be given to two or more areas (i.e., multisite TMS). Single or paired stimuli and short stimulus trains (i.e., high-frequency bursts) provide a means of transiently disrupting ongoing neuronal processing in the stimulated cortex. Repetitive TMS (rTMS) refers to the application of prolonged trains of stimuli, which are either given continuously as long trains at a constant rate (continuous rTMS) or intermittently as repetitive bursts (i.e., intermittent or burst-like rTMS). rTMS can modify the excitability of the cerebral cortex at the stimulated site and also at remote interconnected brain regions, beyond the time of stimulation. Its neuromodulatory effects make rTMS a valuable tool for studying the functional plasticity and short-term reorganization of neuronal networks and may be used therapeutically in patients with neurological and psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen EA, Pasley BN et al (2007) Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. Science 317:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Andoh J, Paus T (2011) Combining functional neuroimaging with off-line brain stimulation: modulation of task-related activity in language areas. J Cogn Neurosci 23:349–361

    Article  PubMed  Google Scholar 

  • Andoh J, Zatorre RJ (2013) Mapping interhemispheric connectivity using functional MRI after transcranial magnetic stimulation on the human auditory cortex. Neuroimage 79:162–171

    Article  PubMed  Google Scholar 

  • Andoh J, Matsushita R et al (2018) Insights into auditory cortex dynamics from non-invasive brain stimulation. Front Neurosci 12:469

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker AT, Jalinous R et al (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    Article  CAS  PubMed  Google Scholar 

  • Baudewig J, Bestmann S (2007) Transkranielle Magnetstimulation und funktionelle Magnetresonanztomographie [Transcranial magnetic stimulation and functional magnetic resonance tomography]. In: Siebner HR, Ziemann U (eds) Das TMS-Buch [The TMS book]. Springer, Heidelberg

    Google Scholar 

  • Baudewig J, Paulus W et al (2000) Artifacts caused by transcranial magnetic stimulation coils and EEG electrodes in T(2)-weighted echo-planar imaging. Magn Reson Imaging 18:479–484

    Article  CAS  PubMed  Google Scholar 

  • Baudewig J, Siebner HR et al (2001) Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS). Neuroreport 12:3543–3548

    Article  CAS  PubMed  Google Scholar 

  • Berardelli A, Inghilleri M et al (1998) Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp Brain Res 122:79–84

    Article  CAS  PubMed  Google Scholar 

  • Bestmann S, Baudewig J et al (2003a) On the synchronization of transcranial magnetic stimulation and functional echo-planar imaging. J Magn Reson Imaging 17:309–316

    Article  PubMed  Google Scholar 

  • Bestmann S, Baudewig J et al (2003b) Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by inter-leaved fMRI-TMS. Neuroimage 20:1685–1696

    Article  PubMed  Google Scholar 

  • Bestmann S, Baudewig J et al (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962

    Article  PubMed  Google Scholar 

  • Bestmann S, Baudewig J et al (2005) BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage 28:22–29

    Article  PubMed  Google Scholar 

  • Bestmann S, Oliviero A et al (2006) Cortical correlates of TMS-induced phantom hand movements revealed with concurrent TMS-fMRI. Neuropsychologia 44:2959–2971

    Article  CAS  PubMed  Google Scholar 

  • Bestmann S, Swayne O et al (2007) Dorsal pre-motor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18(6):1281–1291

    Article  PubMed  Google Scholar 

  • Bestmann J, Ruff CC et al (2008) Concurrent TMS and functional magnetic resonance imaging: methods and current advances. In: Wassermann EM, Epstein CM, Ziemann U (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York

    Google Scholar 

  • Binney RJ, Lambon Ralph MA (2015) Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia 76:170–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohning DE, Pecheny AP et al (1997) Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport 8:2535–2538

    Article  CAS  PubMed  Google Scholar 

  • Bohning DE, Shastri A et al (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Investig Radiol 33:336–340

    Article  CAS  Google Scholar 

  • Bohning DE, Shastri A et al (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394

    Article  CAS  PubMed  Google Scholar 

  • Bohning DE, Shastri A et al (2000a) Motor cortex brain activity induced by 1-Hz transcranial magnetic stimulation is similar in location and level to that for volitional movement. Investig Radiol 35:676–683

    Article  CAS  Google Scholar 

  • Bohning DE, Shastri A et al (2000b) BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J Magn Reson Imaging 11:569–574

    Article  CAS  PubMed  Google Scholar 

  • Bohning DE, Denslow S et al (2003a) Interleaving fMRI and rTMS. Suppl Clin Neurophysiol 56:42–54

    Article  CAS  PubMed  Google Scholar 

  • Bohning DE, Denslow S et al (2003b) A TMS coil positioning/holding system for MR image-guided TMS interleaved with fMRI. Clin Neurophysiol 114:2210–2219

    Article  PubMed  Google Scholar 

  • Bohning DE, Shastri A et al (2003c) BOLD-fMRI response vs. transcranial magnetic stimulation (TMS) pulse-train length: testing for linearity. J Magn Reson Imaging 17:279–290

    Article  PubMed  Google Scholar 

  • Cardoso EF, Fregni F et al (2008) rTMS treatment for depression in Parkinson’s disease increases BOLD responses in the left prefrontal cortex. Int J Neuropsychopharmacol 11:173–183

    Article  PubMed  Google Scholar 

  • Chen R, Classen J et al (1997a) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Gerloff C et al (1997b) Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr Clin Neurophysiol 105:415–421

    Article  CAS  PubMed  Google Scholar 

  • Cohen LG, Celnik P et al (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389:180–183

    Article  CAS  PubMed  Google Scholar 

  • Davey J, Cornelissen PL et al (2015) Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J Neurosci 35:15230–15239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denslow S, Lomarev M et al (2004) A high resolution assessment of the repeatability of relative location and intensity of transcranial magnetic stimulation-induced and volitionally induced blood oxygen level-dependent response in the motor cortex. Cogn Behav Neurol 17:163–173

    Article  PubMed  Google Scholar 

  • Denslow S, Bohning DE et al (2005a) An increased precision comparison of TMS-induced motor cortex BOLD fMRI response for image-guided versus function-guided coil placement. Cogn Behav Neurol 18:119–126

    Article  PubMed  Google Scholar 

  • Denslow S, Lomarev M et al (2005b) Cortical and subcortical brain effects of transcranial magnetic stimulation (TMS)-induced movement: an interleaved TMS/functional magnetic resonance imaging study. Biol Psychiatry 57:752–760

    Article  PubMed  Google Scholar 

  • Donaldson PH, Kirkovski M et al (2018) Autism-relevant traits interact with temporoparietal junction stimulation effects on social cognition: a high-definition transcranial direct current stimulation and electroencephalography study. Eur J Neurosci 47:669–681

    Article  PubMed  Google Scholar 

  • Ettinger GJ, Leventon ME et al (1998) Experimentation with a transcranial magnetic stimulation system for functional brain mapping. Med Image Anal 2:133–142

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald PB, Sritharan A et al (2007) A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression. J Clin Psychopharmacol 27:488–492

    Article  PubMed  Google Scholar 

  • Friston KJ, Harrison L et al (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Gerschlager W, Siebner HR et al (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455

    Article  CAS  PubMed  Google Scholar 

  • Grefkes C, Nowak DA et al (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 50:233–242

    Article  PubMed  Google Scholar 

  • Gross M, Nakamura L et al (2007) Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and meta-analysis comparing the recent vs. the earlier rTMS studies. Acta Psychiatr Scand 116:165–173

    Article  CAS  PubMed  Google Scholar 

  • Hallam GP, Whitney C et al (2016) Charting the effects of TMS with fMRI: modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia 93:40–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamada M, Hanajima R et al (2007) Quadropulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex. Clin Neurophysiol 118:2672–2682

    Article  PubMed  Google Scholar 

  • Hartwigsen G (2015) The neurophysiology of language: insights from non-invasive brain stimulation in the healthy human brain. Brain Lang 148:81–94

    Article  PubMed  Google Scholar 

  • Hartwigsen G, Saur D (2019) Neuroimaging of stroke recovery from aphasia – insights into plasticity of the human language network. Neuroimage 190:14–31

    Article  PubMed  Google Scholar 

  • Hartwigsen G, Baumgaertner A et al (2010a) Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci U S A 107:16494–16499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Price CJ et al (2010b) The right posterior inferior frontal gyrus contributes to phonological word decisions in the healthy brain: evidence from dual-site TMS. Neuropsychologia 48:3155–3163

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Bestmann S et al (2012) Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming. J Neurosci 32:16162–16171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Saur D et al (2013) Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production. Proc Natl Acad Sci U S A 110:16402–16407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwigsen G, Weigel A et al (2016) Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study. Cereb Cortex 26:2590–2601

    Article  PubMed  Google Scholar 

  • Hartwigsen G, Bzdok D et al (2017) Rapid short-term reorganization in the language network. Elife 6: pii: e25964

    Google Scholar 

  • Hartwigsen G, Stockert S et al (in press) Short-term modulation of the lesioned language network. eLife.

    Google Scholar 

  • Heiss WD, Hartmann A et al (2013) Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics. Cerebrovasc Dis 36:363–372

    Article  PubMed  Google Scholar 

  • Herwig U, Abler B et al (2003a) Verbal storage in a premotor-parietal network: evidence from fMRI-guided magnetic stimulation. Neuroimage 20:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Herwig U, Satrapi P et al (2003b) Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99

    Article  PubMed  Google Scholar 

  • Herz DM, Christensen MS et al (2014) Motivational tuning of fronto-subthalamic connectivity facilitates control of action impulses. J Neurosci 34:3210–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YZ, Edwards MJ et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  • Hubl D, Nyffeler T et al (2008) Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field. Neuroscience 151:921–928

    Article  CAS  PubMed  Google Scholar 

  • Ilmoniemi RJ, Virtanen J et al (1997) Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 8:3537–3540

    Article  CAS  PubMed  Google Scholar 

  • Jasper HH (1958) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:367–380

    Google Scholar 

  • Jung J, Lambon Ralph MA (2016) Mapping the dynamic network interactions underpinning cognition: a cTBS-fMRI study of the flexible adaptive neural system for semantics. Cereb Cortex 26:3580–3590

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemna LJ, Gembris D (2003) Repetitive transcranial magnetic stimulation induces different responses in different cortical areas: a functional magnetic resonance study in humans. Neurosci Lett 336:85–88

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  • Koch G, Franca M, Albrecht UV et al (2006) Effects of paired pulse TMS of primary somatosensory cortex on perception of a peripheral electrical stimulus. Exp Brain Res 172:416–424

    Article  PubMed  Google Scholar 

  • Kuroda Y, Motohashi N et al (2006) Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression. J Affect Disord 95:35–42

    Article  CAS  PubMed  Google Scholar 

  • Lang N, Harms J et al (2006) Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability. Clin Neurophysiol 117:2292–2301

    Article  PubMed  Google Scholar 

  • Langguth B, Eichhammer P et al (2006) Neuronavigated transcranial magnetic stimulation and auditory hallucinations in a schizophrenic patient: monitoring of neurobiological effects. Schizophr Res 84:185–186

    Article  PubMed  Google Scholar 

  • Lee JH, van Donkelaar P (2006) The human dorsal premotor cortex generates on-line error corrections during sensorimotor adaptation. J Neurosci 26:3330–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee L, Siebner HR et al (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefaucheur JP, Brugieres P et al (2007) The value of navigation-guided rTMS for the treatment of depression: an illustrative case. Neurophysiol Clin 37:265–271

    Article  PubMed  Google Scholar 

  • Li X, Nahas Z et al (2004a) Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biol Psychiatry 55:882–890

    Article  PubMed  Google Scholar 

  • Li X, Teneback CC et al (2004b) Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 29:1395–1407

    Article  CAS  PubMed  Google Scholar 

  • Massimini M, Ferrarelli F et al (2005) Breakdown of cortical effective connectivity during sleep. Science 309:2228–2232

    Article  CAS  PubMed  Google Scholar 

  • McConnell KA, Bohning DE et al (2003) BOLD fMRI response to direct stimulation (transcranial magnetic stimulation) of the motor cortex shows no decline with age. J Neural Transm 110:495–507

    Article  CAS  PubMed  Google Scholar 

  • Miniussi C, Ruzzoli M et al (2010) The mechanism of transcranial magnetic stimulation in cognition. Cortex 46:128–130

    Article  PubMed  Google Scholar 

  • Miniussi C, Harris JA et al (2013) Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev 37:1702–1712

    Article  PubMed  Google Scholar 

  • Mottaghy FM, Hungs M et al (1999) Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology 53:1806–1812

    Article  CAS  PubMed  Google Scholar 

  • Mottaghy FM, Sparing R et al (2006) Enhancing picture naming with transcranial magnetic stimulation. Behav Neurol 17:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Mottonen R, van de Ven GM et al (2014) Attention fine-tunes auditory-motor processing of speech sounds. J Neurosci 34:4064–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahas Z, Lomarev M et al (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50:712–720

    Article  CAS  PubMed  Google Scholar 

  • Neggers SF, Langerak TR et al (2004) A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. Neuroimage 21:1805–1817

    Article  CAS  PubMed  Google Scholar 

  • Neggers SF, Huijbers W et al (2007) TMS pulses on the frontal eye fields break coupling between visuospatial attention and eye movements. J Neurophysiol 98:2765–2778

    Article  CAS  PubMed  Google Scholar 

  • Nowak DA, Grefkes C et al (2008) Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 65:741–747

    Article  PubMed  Google Scholar 

  • O’Shea J, Johansen-Berg H et al (2007) Functionally specific reorganization in human premotor cortex. Neuron 54:479–490

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Tormos JM et al (1998) Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol 15:333–343

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V et al (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    Article  CAS  PubMed  Google Scholar 

  • Pasley BN, Allen EA et al (2009) State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62:291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschina W, Conca A et al (2001) Low frequency rTMS as an add-on antidepressive strategy: heterogeneous impact on 99 mTc-HMPAO and 18F-FDG uptake as measured simultaneously with the double isotope SPECT technique. Pilot study. Nucl Med Commun 22:867–873

    Article  CAS  PubMed  Google Scholar 

  • Pleger B, Blankenburg F et al (2006) Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans. J Neurosci 26:1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter GT, Mennemeier M et al (2006) Repetitive transcranial magnetic stimulation for tinnitus: a case study. Laryngoscope 116:1867–1872

    Article  PubMed  Google Scholar 

  • Ridding MC, Rothwell JC (2007) Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 8:559–567

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Hallett M et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120(12):2008–2039

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossini PM, Burke D et al (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rounis E, Stephan KE et al (2006) Acute changes in frontoparietal activity after repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex in a cued reaction time task. J Neurosci 26:9629–9638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rounis E, Yarrow K et al (2007) Effects of rTMS conditioning over the frontoparietal network on motor versus visual attention. J Cogn Neurosci 19:513–524

    Article  PubMed  Google Scholar 

  • Ruff CC, Blankenburg F et al (2006) Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr Biol 16:1479–1488

    Article  CAS  PubMed  Google Scholar 

  • Ruff CC, Bestmann S et al (2008) Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb Cortex 18:817–827

    Article  PubMed  Google Scholar 

  • Rushworth MF, Ellison A et al (2001) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4:656–661

    Article  CAS  PubMed  Google Scholar 

  • Ruzzoli M, Marzi CA et al (2010) The neural mechanisms of the effects of transcranial magnetic stimulation on perception. J Neurophysiol 103:2982–2989

    Article  PubMed  Google Scholar 

  • Sack AT, Kohler A et al (2006) The temporal characteristics of motion processing in hMT/V5+: combining fMRI and neuronavigated TMS. Neuroimage 29:1326–1335

    Article  PubMed  Google Scholar 

  • Sack AT, Kohler A et al (2007) Imaging the brain activity changes underlying impaired visuospatial judgments: simultaneous FMRI, TMS, and behavioral studies. Cereb Cortex 17:2841–2852

    Article  PubMed  Google Scholar 

  • Sandrini M, Umilta C et al (2011) The use of transcranial magnetic stimulation in cognitive neuroscience: a new synthesis of methodological issues. Neurosci Biobehav Rev 35:516–536

    Article  PubMed  Google Scholar 

  • Schonfeldt-Lecuona C, Thielscher A et al (2005) Accuracy of stereotaxic positioning of transcranial magnetic stimulation. Brain Topogr 17:253–259

    Article  PubMed  Google Scholar 

  • Shastri A, George MS et al (1999) Performance of a system for interleaving transcranial magnetic stimulation with steady state magnetic resonance imaging. Electroencephalogr Clin Neurophysiol Suppl 51:55–64

    CAS  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Siebner HR, Filipovic SR et al (2003) Patients with focal arm dystonia have increased sensitivity to slow-frequency repetitive TMS of the dorsal premotor cortex. Brain 126:2710–2725

    Article  PubMed  Google Scholar 

  • Siebner HR, Bergmann TO et al (2009a) Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:58–80

    Article  PubMed  Google Scholar 

  • Siebner HR, Hartwigsen G et al (2009b) How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45:1035–1042

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvanto J, Cattaneo Z (2017) Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behavior. Brain Cogn 119:32–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvanto J, Bona S et al (2017) Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Neuroscience 363:134–141

    Article  CAS  PubMed  Google Scholar 

  • Smith JA, Mennemeier M et al (2007) Repetitive transcranial magnetic stimulation for tinnitus: a pilot study. Laryngoscope 117:529–534

    Article  PubMed  Google Scholar 

  • Sole-Padulles C, Bartres-Faz D et al (2006) Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. Cereb Cortex 16:1487–1493

    Article  PubMed  Google Scholar 

  • Sparing R, Mottaghy FM et al (2001) Repetitive transcranial magnetic stimulation effects on language function depend on the stimulation parameters. J Clin Neurophysiol 18:326–330

    Article  CAS  PubMed  Google Scholar 

  • Sparing R, Buelte D et al (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29:82–96

    Article  PubMed  Google Scholar 

  • Speer AM, Kimbrell TA et al (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48:1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Starck J, Rimpilainen I et al (1996) The noise level in magnetic stimulation. Scand Audiol 25:223–226

    Article  CAS  PubMed  Google Scholar 

  • Strafella AP, Ko JH et al (2005) Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C] raclopride PET study. Eur J Neurosci 22:2946–2952

    Article  PubMed  PubMed Central  Google Scholar 

  • Tegenthoff M, Ragert P et al (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terao Y, Ugawa Y et al (1998) Localizing the site of magnetic brain stimulation by functional MRI. Exp Brain Res 121:145–152

    Article  CAS  PubMed  Google Scholar 

  • Thickbroom GW, Byrnes ML et al (2006) Repetitive paired-pulse TMS at I-wave periodicity markedly increases corticospinal excitability: a new technique for modulating synaptic plasticity. Clin Neurophysiol 117:61–66

    Article  PubMed  Google Scholar 

  • Vink JJT, Mandija S et al (2018) A novel concurrent TMS-fMRI method to reveal propagation patterns of prefrontal magnetic brain stimulation. Hum Brain Mapp 39:4580

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79

    Article  CAS  PubMed  Google Scholar 

  • Walsh V, Rushworth M (1999) A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37:125–135

    CAS  PubMed  Google Scholar 

  • Ward NS, Bestmann S et al (2010) Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions. J Neurosci 30:9216–9223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation, 5–7 June, 1996. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  CAS  PubMed  Google Scholar 

  • Wassermann EM (2008) The motor-evoked potential in health and disease. In: Wassermann EM, Epstein CM, Ziemann U (eds) The oxford handbook of transcranial stimulation. Oxford University Press, New York

    Google Scholar 

  • Wassermann EM, Lisanby SH (2001) Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin Neurophysiol 112:1367–1377

    Article  CAS  PubMed  Google Scholar 

  • Weyh T, Siebner HR (2007) Hirnstimulation – Technische Grundlagen [Stimulation of the brain – technical basics]. In: Siebner HR, Ziemann U (eds) Das TMS-Buch [the TMS book]. Springer, Heidelberg

    Google Scholar 

  • Weyh T, Wendicke K et al (2005) Marked differences in the thermal characteristics of figure-of-eight shaped coils used for repetitive transcranial magnetic stimulation. Clin Neurophysiol 116:1477–1486

    Article  PubMed  Google Scholar 

  • Wig GS, Grafton ST et al (2005) Reductions in neural activity underlie behavioral components of repetition priming. Nat Neurosci 8:1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Yoo WK, You SH et al (2008) High frequency rTMS modulation of the sensorimotor networks: behavioral changes and fMRI correlates. Neuroimage 39:1886–1895

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gesa Hartwigsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartwigsen, G., Kassuba, T., Siebner, H.R. (2020). Combining Transcranial Magnetic Stimulation with (f)MRI. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Cham. https://doi.org/10.1007/978-3-030-41874-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41874-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41873-1

  • Online ISBN: 978-3-030-41874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics