Skip to main content

Genetically Modified Microbes for Second-Generation Bioethanol Production

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The present world economy is highly dependent on the stocked natural resources of the Earth, which are being used for the production of fuel, electricity, and other needs. The very high level of fossil fuel consumption has generated a high level of pollutants in the atmosphere, with the scenario being worse in urban areas. Because the level of greenhouse gases in the Earth’s atmosphere has drastically increased, bioethanol has received worldwide interest. Bioethanol is a major second-generation biofuel. The global market for bioethanol has entered a phase of rapid, transitional growth. Many countries around the world are shifting their focus toward renewable sources for power production because of depleted crude oil reserves. The trend is extending to transport fuel as well. Most of the environmentally aware countries across the globe consider biomass for its economic utilization, and have directed state policies regarding the same, to meet future energy demands and also to meet carbon dioxide reduction targets. The primary focus is on reducing the emissions and thereby complying with the Kyoto Protocol for specified targets and also meeting energy demands. As well as the production of bioethanol, lignocellulosic biomass is also used in the production of both power and heat through combustion. Petroleum-based fuels can be replaced by bioethanol and other biofuels if biomass materials such as sugarcane bagasse, corn stover, switchgrass, and algae are effectively utilized. As a matter of fact, lignocellulosic biomass is the most abundant biomass present on the surface of the Earth. Among biomass sources, agricultural wastes are the most plentiful and cheapest, especially wheat straw, which is the most plentiful in Europe and is second worldwide after rice straw. As well as wheat, several other crops produce plentiful waste such as corn stover, sugarcane bagasse, and rice straw.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agosin E, Jarpa S, Rojas E, Espejo E (1989) Solid-state fermentation of pine sawdust by selected brown-rot fungi. Enzyme Microb Technol 11(8):511–517

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros MJ, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    CAS  PubMed  Google Scholar 

  • Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156(2):818–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer EA, Shimon LJ, Shoham Y, Lamed R (1998) Cellulosomes—structure and ultrastructure. J Struct Biol 124(2-3):221–234

    CAS  PubMed  Google Scholar 

  • Béguin P, Gilkes NR, Kilburn DG, Miller RC, O’Neill GP, Warren RAJ (1987) Cloning of cellulase genes. Crit Rev Biotechnol 6(2):129–162

    Google Scholar 

  • Behera BC, Parida S, Dutta SK, Thatoi HN (2014) Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi River Delta and their cellulase production ability. Am J Microbiol Res 2(1):41–46

    Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15(1):106

    Google Scholar 

  • Blanchette RA, Obst JR, Timell TE (1994) Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung 48(s1):34–42

    CAS  Google Scholar 

  • Dey S, Maiti TK, Bhattacharyya BC (1994) Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl Environ Microbiol 60(11):4216–4218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JK, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265(5171):524–528

    CAS  PubMed  Google Scholar 

  • Durand H, Clanet M, Tiraby G (1988) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb Technol 10 (6):341–346

    Google Scholar 

  • Eriksson KEL, Blanchette RA, Ander P (1990) Morphological aspects of wood degradation by fungi and bacteria. In: Microbial and enzymatic degradation of wood and wood components. Springer, Berlin, pp 1–87

    Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336(6089):1715–1719

    CAS  PubMed  Google Scholar 

  • Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–681

    CAS  PubMed  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31988–31997

    PubMed  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    CAS  PubMed  Google Scholar 

  • Gruber F, Visser J, Kubicek CP, De Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18(1):71–76

    CAS  PubMed  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567

    CAS  Google Scholar 

  • Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, Gonzalez R, Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 338(3):495–506

    Google Scholar 

  • Honda H, Naito H, Taya M, Iijima S, Kobayashi T (1987) Cloning and expression in Escherichia coli of a Thermoanaerobacter cellulolyticus gene coding for heat-stable β-glucanase. Appl Microbiol Biotechnol 25(5):480–483

    CAS  Google Scholar 

  • Honda H, Saito T, Iijima S, Kobayashi T (1988) Molecular cloning and expression of a β-glucosidase gene from Ruminococcus albus in Escherichia coli. Enzyme Microb Technol 10(9):559–562

    CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333(6047):1279–1282

    CAS  PubMed  Google Scholar 

  • Ilmen M, Saloheimo ANU, Onnela ML, Penttilä ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63(4):1298–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries T, Lindblad P (2009) We march backwards into the future. Curr Opin Biotechnol 20:255–256

    CAS  PubMed  Google Scholar 

  • Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeterior Biodegradation 39(2-3):165–179

    CAS  Google Scholar 

  • Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT, Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 100 (24):6378–6384

    Google Scholar 

  • Jung KH, Chun YC, Lee JC, Kim JH, Yoon KH (1996) Cloning and expression of a Bacillus sp. 79-23 cellulase gene. Biotechnol Lett 18(9):1077–1082

    CAS  Google Scholar 

  • Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35(5):403–419

    Google Scholar 

  • Kawai S, Honda H, Tanase T, Taya M, Iijima S, Kobayashi T (1987) Molecular cloning of Ruminococcus albus cellulase gene. Agric Biol Chem 51(1):59–63

    CAS  Google Scholar 

  • Kerem Z, Jensen KA, Hammel KE (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction. FEBS Lett 446(1):49–54

    CAS  PubMed  Google Scholar 

  • Kubicek CP (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163(2):133–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhar S, Nair LM, Kuhad RC (2008) Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol 54(4):305–313

    CAS  PubMed  Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP (1996) Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci U S A 93(15):7755–7760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2):828–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(38):16151–16156

    PubMed  PubMed Central  Google Scholar 

  • Levin L, Herrmann C, Papinutti VL (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J 39(1):207–214

    Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73(2):269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandels M, Reese ET (1960) Induction of cellulase in fungi by cellobiose. J Bacteriol 79(6):816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandels M, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J Bacteriol 83(2):400–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21(1):152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Biofuels. Springer, Berlin, pp 95–120

    Google Scholar 

  • Messner R, Kubicek CP (1991) Carbon source control of cellobiohydrolase I and II formation by Trichoderma reesei. Appl Environ Microbiol 57(3):630–635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Messner R, Hagspiel K, Kubicek CP (1990) Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei. Arch Microbiol 154(2):150–155

    CAS  Google Scholar 

  • Nisizawa T, Suzuki H, Nakayama M, Nisizawa K (1971) Inductive formation of cellulase by sophorose in Trichoderma viride. J Biochem (Tokyo) 70(3):375–385

    CAS  Google Scholar 

  • Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegradation 52(3):151–160

    CAS  Google Scholar 

  • Reese ET (1956) A microbiological process report; enzymatic hydrolysis of cellulose. App Microbiol 4:39–45

    CAS  Google Scholar 

  • Rodrigues M, Pinto P, Bezerra R, Dias A, Guedes C, Cardoso V, Cone J, Ferreira L, Colaco J, Sequeira C (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim Feed Sci Technol 141(3–4):326–338

    Google Scholar 

  • Ryu DD, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2(2):91–102

    CAS  Google Scholar 

  • Saddler JN, Gregg DJ (1998) Ethanol production from forest product wastes. For Prod Biotechnol 183:207

    Google Scholar 

  • Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez ÁT, Martínez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102(16):7500–7506

    PubMed  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Google Scholar 

  • Seidl V, Seibel C, Kubicek CP, Schmoll M (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci 106(33):13909–13914

    Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564

    Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kwok S, Myambo KAIM, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Nat Biotechnol 1(8):691

    CAS  Google Scholar 

  • Sørensen A, Lübeck M, Lübeck PS, Ahring BK (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomol Ther 3(3):612–631

    Google Scholar 

  • Srivastava KK, Verma PK, Srivastava R (1999) A recombinant cellulolytic Escherichia coli: cloning of the cellulase gene and characterization of a bifunctional cellulase. Biotechnol Lett 21(4):293–297

    CAS  Google Scholar 

  • Takashima S, Iikura H, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J Biotechnol 65(2–3):163–171

    Google Scholar 

  • Viksø-Nielsen A (2008) Recent development in enzymes for bio-mass hydrolysis. In First European workshop on biotechnology for lignocellulose biorefineries (No. 28-2008, p 29). Forest & Landscape Denmark, University of Copenhagen, Hørsholm

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to CSIR for providing funds for starting research work on cellulose-degrading microbes for bioethanol production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Prakash Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Gaurav, A.K., Verma, J.P. (2020). Genetically Modified Microbes for Second-Generation Bioethanol Production. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_7

Download citation

Publish with us

Policies and ethics