Skip to main content

Understanding Its Role Bioengineered Trichoderma in Managing Soil-Borne Plant Diseases and Its Other Benefits

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1214 Accesses

Abstract

With growing concerns about the shortage of food all over the world, plant diseases have been posing a dangerous threat to the agricultural and horticultural crops every year. The methods to control these plant diseases chemically have not met any success and instead have led to economic, health, safety, and environmental risks. An alternative to this problem is the employment of biological antagonists. Trichoderma is among the most commonly isolated and studied soil fungi. These fungi have been commercially marketed as biofertilizers, biopesticides, and soil amendments. Various strategies have been employed by Trichoderma to enhance the plant defense against pathogens, plant growth, and development. The biocontrol or Trichoderma-plant-pathogen activity involves mycoparasitism, antibiotics, nutrient competition, lytic enzyme production, root colonization, systemic defense induction, and soil environment influence. The macromolecular mechanism of these biocontrol activities and their corresponding genetical background play a vital role in understanding and improving the efficiency of natural strains and thereby help in controlling plant diseases and improving plant growth resourcefully. In this chapter, we focus on the mechanism underlying these fungi-plant-pathogen relationships at various levels for better application in various industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atanasova L, Jaklitsch WM, KomoÅ„-Zelazowska M, Kubicek CP, Druzhinina IS (2010) Clonal species Trichoderma parareesei sp. nov. likely resembles the ancestor of the cellulase producer Hypocrea jecorina/T. reesei. Appl Environ Microbiol 76(21):7259–7267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    PubMed  Google Scholar 

  • Bisby G (1939) Trichoderma viride Pers. ex Fries, and notes on Hypocrea. Trans Br Mycol Soc 23(2):149–168

    Google Scholar 

  • Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharmacol 39(2):214–228

    CAS  PubMed  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147(2):779–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158(1):139–146

    CAS  PubMed  Google Scholar 

  • Brückner H, Graf H, Bokel M (1984) Paracelsin; characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active mold Trichoderma reesei. Part B. Experientia 40(11):1189–1197

    PubMed  Google Scholar 

  • Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S, Vannacci G, Kubicek CP, Seidl-Seiboth V (2011) Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57(1):13–23

    CAS  PubMed  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: The mycota IV: environmental and microbial relationships. Springer-Verlag, Berlin, pp 165–184

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6(10):1554–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Boer W, Verheggen P, Gunnewiek PJK, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69(2):835–844

    PubMed  PubMed Central  Google Scholar 

  • de Oliveira AL, Gallo M, Pazzagli L, Benedetti CE, Cappugi G, Scala A, Pantera B, Spisni A, Pertinhez TA, Cicero DO (2011) The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double ψβ-barrel fold and carbohydrate binding. J Biol Chem 286(20):17560–17568

    PubMed  PubMed Central  Google Scholar 

  • De Respinis S, Vogel G, Benagli C, Tonolla M, Petrini O, Samuels GJ (2010) MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 9(1):79–100

    Google Scholar 

  • Degenkolb T, Von Doehren H, Fog Nielsen K, Samuels GJ, Brückner H (2008) Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem Biodivers 5(5):671–680

    CAS  PubMed  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006a) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19(8):838–853

    PubMed  Google Scholar 

  • Djonović S, Pozo MJ, Kenerley CM (2006b) Tvbgn3, a β-1, 6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 72(12):7661–7670

    PubMed  PubMed Central  Google Scholar 

  • Djonović S, Vittone G, Mendoza-Herrera A, Kenerley CM (2007a) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing β-1,3- and β-1,6-glucanase genes. Mol Plant Pathol 8(4):469–480

    PubMed  Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007b) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145(3):875–889

    PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, KomoÅ„ M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42(10):813–828

    CAS  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9(10):749

    CAS  PubMed  Google Scholar 

  • Eibinger M, Sigl K, Sattelkow J, Ganner T, Ramoni J, Seiboth B, Plank H, Nidetzky B (2016) Functional characterization of the native swollenin from Trichoderma reesei: study of its possible role as C 1 factor of enzymatic lignocellulose conversion. Biotechnol Biofuels 9(1):178

    PubMed  PubMed Central  Google Scholar 

  • Gams W, Meyer W (1998) What exactly is Trichoderma harzianum? Mycologia 90:904–915

    CAS  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56(10):1799–1804

    CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39(8):1968–1977

    CAS  Google Scholar 

  • Grondona I, Hermosa R, Tejada M, Gomis M, Mateos P, Bridge P, Monte E, Garcia-Acha I (1997) Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl Environ Microbiol 63(8):3189–3198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gullino ML (1992) Control of botrytis rot of grapes and vegetables with Trichoderma spp. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Springer, Boston, pp 125–132

    Google Scholar 

  • Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18(1):16

    PubMed  PubMed Central  Google Scholar 

  • Harman G, Lorito M, Lynch J (2004a) Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol 56:313

    CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004b) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43

    CAS  PubMed  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004c) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94(2):147–153

    PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Díaz-Mínguez JM, Iturriaga EA, Monte E (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Curr Genet 38(6):343–350

    CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    CAS  PubMed  Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37(1):427–446

    CAS  PubMed  Google Scholar 

  • Hoitink H, Madden L, Dorrance A (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96(2):186–189

    CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 29(3):321–324

    CAS  Google Scholar 

  • Keswani C, Singh SP, Singh H (2013) A superstar in biocontrol enterprise: Trichoderma spp. Biotech Today 3(2):27–30

    Google Scholar 

  • Khan J, Ooka J, Miller S, Madden L, Hoitink H (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88(3):280–286

    CAS  PubMed  Google Scholar 

  • Krause MS, Madden LV, Hoitink HA (2001) Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of poinsettia. Phytopathology 91(11):1116–1123

    CAS  PubMed  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2(1):19

    PubMed  PubMed Central  Google Scholar 

  • Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106(7):757–767

    CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    CAS  PubMed  Google Scholar 

  • Kumar A, Scher K, Mukherjee M, Pardovitz-Kedmi E, Sible GV, Singh US, Kale SP, Mukherjee PK, Horwitz BA (2010) Overlapping and distinct functions of two Trichoderma virens MAP kinases in cell-wall integrity, antagonistic properties and repression of conidiation. Biochem Biophys Res Commun 398(4):765–770

    CAS  PubMed  Google Scholar 

  • Leandro L, Guzman T, Ferguson L, Fernandez G, Louws F (2007) Population dynamics of Trichoderma in fumigated and compost-amended soil and on strawberry roots. Appl Soil Ecol 35(1):237–246

    Google Scholar 

  • Lehmann S, Serrano M, L’Haridon F, Tjamos SE, Metraux J-P (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54–62

    CAS  PubMed  Google Scholar 

  • Lieckfeldt E (2000) An evaluation of the use of ITS sequences in the taxonomy of the Hypocreales. Stud Mycol 45:35–44

    Google Scholar 

  • Lim MS, Elenitoba-Johnson KS (2004) Proteomics in pathology research. Lab Investig 84(10):1227

    CAS  PubMed  Google Scholar 

  • Lopes FAC, Steindorff AS, Geraldine AM, Brandão RS, Monteiro VN, Júnior ML, Coelho ASG, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116(7):815–824

    CAS  PubMed  Google Scholar 

  • Lu Z, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK (2004) In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 70(5):3073–3081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lumsden R, Locke J, Adkins S, Walter J, Ridout C (1992) Isolation and localization of the antibiotics gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82(2):230–235

    CAS  Google Scholar 

  • Lumsden R, Lewis J, Fravel D (1995) Formulation and delivery of biocontrol agents for use against soilborne plant pathogens. In: Hall FR, Barry JW (eds) Biorational pest control agents. American Chemical Society, Washington, DC, pp 166–182

    Google Scholar 

  • Luo Y, Zhang D-D, Dong X-W, Zhao P-B, Chen L-L, Song X-Y, Wang X-J, Chen X-L, Shi M, Zhang Y-Z (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313(2):120–126

    CAS  PubMed  Google Scholar 

  • Mach R, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60(5):515–522

    CAS  PubMed  Google Scholar 

  • Manczinger L, Antal Z, Kredics L (2002) Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiol Immunol Hung 49(1):1–14

    CAS  PubMed  Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50(5):307–321

    CAS  PubMed  Google Scholar 

  • Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microbes Environ 26(2):128–134

    PubMed  Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martínez P, García JM, Olmedo-Monfil V, Cortés C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci 100(26):15965–15970

    CAS  PubMed  Google Scholar 

  • Monte E (2001) Understanding Trichoderma: between biotechnology and microbial ecology. Int Microbiol 4(1):1–4

    CAS  PubMed  Google Scholar 

  • Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169(6):614–620

    PubMed  Google Scholar 

  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286(6):4544–4554

    CAS  PubMed  Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012a) Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012b) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158(1):35–45

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013) Trichoderma in agriculture, industry and medicine: an overview. In: Mukherjee PK (ed) Trichoderma: biology and applications. CAB International, Boston, pp 1–9

    Google Scholar 

  • Naher L, Yusuf UK, Ismail A, Hossain K (2014) Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak J Bot 46(4):1489–1493

    Google Scholar 

  • Oda S, Isshiki K, Ohashi S (2009) Production of 6-pentyl-α-pyrone with Trichoderma atroviride and its mutant in a novel extractive liquid-surface immobilization (Ext-LSI) system. Process Biochem 44(6):625–630

    CAS  Google Scholar 

  • Omann MR, Lehner S, Rodríguez CE, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158(1):107–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44(11):1123–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454(7206):841

    CAS  PubMed  Google Scholar 

  • Ruiz N, Roullier C, Petit K, Sallenave-Namont C, Grovel O, Pouchus YF (2013) Marine-derived Trichoderma: a source of new bioactive metabolites. In: Mukherjee PK (ed) Trichoderma: biology and applications. CAB International, Boston, pp 247–279

    Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131(1):15–26

    CAS  Google Scholar 

  • Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158(1):129–138

    CAS  PubMed  Google Scholar 

  • Samuels GJ, Ismaiel A, Bon M-C, De Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102(4):944–966

    CAS  PubMed  Google Scholar 

  • Savazzini F, Longa CMO, Pertot I (2009) Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol Biochem 41(7):1457–1465

    CAS  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87(3):787–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol 142(3):1169–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Singh A, Shukla N, Kabadwal B, Tewari A, Kumar J (2018) Review on plant-trichoderma-pathogen interaction. Int J Curr Microbiol App Sci 7(2):2382–2397

    Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79(2):198–203

    Google Scholar 

  • Sivasithamparam K, Ghisalberti E (2014) Secondary metabolism in Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Volume 1: basic biology, taxonomy and genetics. CRC Press, Boca Raton, p 139

    Google Scholar 

  • Vargas WA, Djonović S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283(28):19804–19815

    CAS  PubMed  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151(2):792–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15(3):261–272

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40(1):1–10

    CAS  Google Scholar 

  • Vinale F, Ghisalberti E, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48(6):705–711

    CAS  PubMed  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7(4):249–258

    CAS  PubMed  Google Scholar 

  • Viterbo A, Horwitz BA (2010) Mycoparasitism. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. American Society of Microbiology, Washington, DC, pp 676–693

    Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305(1):42–48

    CAS  PubMed  Google Scholar 

  • Wakelin S, Sivasithamparam K, Cole A, Skipp R (1999) Saprophytic growth in soil of a strain of Trichoderma koningii. N Z J Agric Res 42(3):337–345

    Google Scholar 

  • Wiater A, Szczodrak J, PleszczyÅ„ska M (2005) Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids. Acta Biol Hung 56(1–2):137–150

    CAS  PubMed  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68(1):60–66

    CAS  PubMed  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 1:227–234

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Saudagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasidharan, S., Tuladhar, P., Raj, S., Saudagar, P. (2020). Understanding Its Role Bioengineered Trichoderma in Managing Soil-Borne Plant Diseases and Its Other Benefits. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_18

Download citation

Publish with us

Policies and ethics