Abstract
The extensive usage of milk and milk products worldwide has attracted special attention to cheese because of its health benefits and easy scale-up. At closer view, the enzymatic processes include endo- and exogenous enzymes such as plasmin, lipoprotein lipase, acid phosphatase, rennets, lipases, lysozyme, catalase, glucose oxidase, and β-galactosidase. Invariably, cheese acquires its texture and flavor by metabolic reactions upon ripening. This chapter focuses specially on the gene-encoded enzymes in fungi and the metabolic pathways, and ultimately summarizes the upstream and downstream processes in cheese production. The metabolic pathway of cheese flavor is controlled by many compounds, such as methanethiol, 2-keto-4-methylthio butyric acid, volatile sulfur compounds, amino acids, aromatic aminotransferases, branched-chain aminotransferases, NAD-glutamate dehydrogenase, and cystathione-β and -γ-lyase. The enzyme applications in brewing in general and for cheese in particular are comprehensively presented along with the genes encoding enzymes in the fungal metabolites used for cheese production. For instance, Penicillium roqueforti produces mycophenolic acid, roquefortine C, and andrastin A metabolites encoded by the sfk1 gene cluster. As a final point, gene tailoring and heterologous regulation are significant processes for improving quality and safety in cheese production.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ávalos J, Díaz-Sánchez V, García-Martínez M, Castrillo J, Ruger-Herreros M, Carmen Limón M (2014) Biosynthesis and molecular genetics of fungal secondary metabolites. In: Fungal biology. Springer, New York
Bachmann HP (2001) Cheese analogues: a review. Int Dairy J 11:505–515
Bamforth CW (2009) Current perspectives on the role of enzymes in brewing. J Cereal Sci 50(3):353–357
Barlowska J, Szwajkowska M, Litwińczuk Z, Król J (2011) Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf 10:291–302
Barth SJ, Barth R, Barth AW (2014) The Barth Report 2013–2014, 32
Becerra M, Rodríguez-Belmonte E, Cerdán ME, Siso MIG (2004) Engineered autolytic yeast strains secreting Kluyveromyces lactis β-galactosidase for production of heterologous proteins in lactose media. J Biotechnol 109:131–137
Beer M, Spector BA, Lawrence PR, Mills DQ, Walton RE (1984) Managing human assets. Simon and Schuster
Bertolini MC, Laramee L, Thomas DY, Cygler M, Schrag JD, Vernet T (1994) Polymorphism in the lipase genes of Geotrichum candidum strains. Eur J Biochem 219(1–2):119–125
Bonnarme P, Arfi K, Dury C, Helinck S, Yvon M, Spinnler HE (2001) Sulfur compound production by Geotrichum candidum from L-methionine: importance of the transamination step. FEMS Microbiol Lett 205:247–252
Boutrou R, Guéguen M (2005) Interests in Geotrichum candidum for cheese technology. Int J Food Microbiol 2:1–20
Brígida AIS, Amaral PFF, Coelho MAZ, Gonçalves LRB (2014) Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101:148–158
Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181(8):2620–2623
Castellote J, Fraud S, Irlinger F, Swennen D, Fer F, Bonnarme P, Monnet C (2015) Investigation of Geotrichum candidum gene expression during the ripening of reblochon-type cheese by reverse transcription-quantitative PCR. Int J Food Microbiol 194:54–61
Chávez R, Roa A, Navarrete K, Trebotich J, Espinosa Y, Vaca I (2010) Evaluation of properties of several cheese-ripening fungi for potential biotechnological applications. Mycoscience 51:84–87
Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, Branca A, Abraham AL, Ceppi M, Conseiller E, Debuchy R, Malagnac F, Goarin A, Silar P, Lacoste S, Sallet E, Bensimon A, Giraud T, Brygoo Y (2014) Multiple recent horizontal transfers of a large genomic region in cheese making Fungi. Nat Commun 5:2876
Cholet O, Hénaut A, Casaregola S, Bonnarme P (2007) Gene expression and biochemical analysis of cheese-ripening yeasts: focus on catabolism of L-methionine, lactate, and lactose. Appl Environ Microbiol 73(8):2561–2570
Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76(5):1161–1171
Del-Cid A, Gil-Durán C, Vaca I, Rojas-Aedo JF, García-Rico RO, Levicán G, Chávez R (2016) Identification and functional analysis of the mycophenolic acid gene cluster of Penicillium roqueforti. PLoS One 11:e0147047
Demarigny Y, Berger C, Desmasures N, Gueguen M, Spinnler HE (2000) Flavour sulphides are produced from methionine by two different pathways by Geotrichum candidum. J Dairy Res 67:261–271
Diezhandino I, Fernández D, González L, McSweeney PLH, Fresno JM (2015) Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón cheese). Food Chem 168:134–141
Domingues L, Guimarães PMR, Oliveira C (2010) Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 1:164–171
Dubey MK, Aamir M, Kaushik MS, Khare S, Meena M, Singh S, Upadhyay RS (2018) PR toxin: biosynthesis, genetic regulation, toxicological potential, prevention and control measures: overview and challenges. Front Pharmacol 9:288. https://doi.org/10.3389/fphar.2018.00288
Dufossé L, Galaup P, Carlet E, Flamin C, Valla A (2005) Spectrocolorimetry in the CIE L∗ A∗ B∗ color space as useful tool for monitoring the ripening process and the quality of PDO red-smear soft cheeses. Food Res Int 38(8–9):919–924
Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat M-N, Bento P, Fraud S, Gibrat J-F, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich J-M, Swennen D, Bonnarme P (2015) Overview of a surface-ripened cheese community functioning by meta-omics analyses edited by D. Ercolini. PLoS One 10(4):e0124360
FAOSTAT (2017) FAOSTAT database on agriculture. FAO (Food and Agriculture Organization of the United Nations), Rome
Fernández-Bodega Á, Álvarez-Álvarez R, Liras P, Martín JF (2017) Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Appl Microbiol Biotechnol 101:6111–6121
Fickers P, Fudalej F, Le Dall MT, Casaregola S, Gaillardin C, Thonart P, Nicaud JM (2005) Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42(3):264–274
Fox PE, McSweeney PLH, Cogan TM, Timothy M, Guinee TP, Timothy P (2000) Fundamentals of cheese science, 1st edn. Springer, Boston
Fox PF, McSweeney PLH, Cogan TM, Guinee TP (2004) Cheese: chemistry, physics and microbiology, vol 1. General aspects. Elsevier, Burlington
García-Estrada C, Martín JF (2016) Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses. Appl Microbiol Biotechnol 100:8371–8384
Garcia-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MA, Durek P, von Döhren H, Martín JF (2011) A single cluster of coregulated genes encodes the biosynthesis of the mycotoxins roquefortine C and meleagrin in Penicillium chrysogenum. Chem Biol 18(11):1499–1512
Ghosh BC, Bockelmann W, Heller KJ (2009) Casein degradation by enzymes of micro-organisms isolated from surface-ripened smear cheese. Milchwissenschaft 64:55–57
Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384
Harbutt J (2009) World cheese book. Penguin, London
Hidalgo PI, Ullán RV, Albillos SM, Montero O, Fernández-Bodega MÁ, García-Estrada C, Fernández-Aguado M, Martín JF (2014) Molecular characterization of the PR-toxin gene cluster in Penicillium roqueforti and Penicillium chrysogenum: cross talk of secondary metabolite pathways. Fungal Genet Biol 62:11–24
Hidalgo PI, Poirier E, Ullán RV, Piqueras J, Meslet-Cladière L, Coton E, Coton M (2017) Penicillium roqueforti PR toxin gene cluster characterization. Appl Microbiol Biotechnol 101:2043–2056
Horne DS (1998) Casein interactions: casting light on the black boxes, the structure in dairy products. Int Dairy J 8(3):171–177
Hui YH, Meunier-Goddik L, Josephsen J, Nip W-K, Stanfield PS (2004) Handbook of food and beverage fermentation technology, Food Science and Technology 134:392–93. CRC Press, Boca Raton
Humbert G, Alais C (1979) Review of the progress of dairy science: the milk proteinase system. J Dairy Res 46:559–571
Hymery N, Vasseur V, Coton M, Mounier J, Jany JL, Barbier G, Coton E (2014) Filamentous fungi and mycotoxins in cheese: a review. Compr Rev Food Sci Food Saf 13:437
Kademi A, Lee B, Houde A (2003) Production of heterologous microbial lipases by yeasts. Indian J Biotechnol 2(3):346–355
Kosalková K, Domínguez-Santos R, Coton M, Coton E, García-Estrada C, Liras P, Martín JF (2015) A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Appl Microbiol Biotechnol 99:7601–7612
Kumura H, Satoh M, Machiya T, Hosono M, Hayakawa T, Wakamatsu J-i (2019) Lipase and protease production of dairy Penicillium sp. on milk-protein-based solid substrates. Int J Dairy Technol 72(3):403–408. 1471-0307.12597
Lanciotti R, Vannini L, Lopez CC, Gobbetti M, Elisabetta Guerzoni M (2005) Evaluation of the ability of Yarrowia lipolytica to impart strain-dependent characteristics to cheese when used as a ripening adjunct. Int J Dairy Technol 58:89–99
Law BA, Goodenough PW (1995) Enzymes in milk and cheese production. In: Enzymes in food processing. Springer, Boston, pp 114–143
Law BA, Mulholland F (1995) Enzymology of lactococci in relation to flavour development from milk proteins. Int Dairy J 5(8):833–854
Leclercq-Perlat M-N, Buono F, Lambert D, Latrille E, Spinnler HE, Corrieu G (2004) Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions. J Dairy Res 71(3):346–354
Leclercq-Perlat M-N, Oumer A, Bergere J-L, Spinnler H-E, Corrieu G (1999) Growth of Debaryomyces hansenii ona bacterial surface-ripened soft cheese. J Dairy Res 66:271–281
Lessard M-H, Viel C, Boyle B, St-Gelais D, Labrie S (2014) Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened camembert-type cheese. BMC Genomics 15:235
Lodi T, Alberti A, Guiard B, Ferrero I (1999) Regulation of the Saccharomyces cerevisiae DLD1 gene encoding the mitochondrial protein D-lactate ferricytochrome c oxidoreductase by HAP1 and HAP2/3/4/5. Mol Gen Genet 262:623–632
Madzak C, Tréton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2(2):207–216
Maggio-Hall LA, Keller NP (2004) Mitochondrial β-oxidation in Aspergillus nidulans. Mol Microbiol 54(5):1173–1185
Maldonado RR, Lopes DB, Aguiar-Oliveira E, Kamimura ES, Macedo GA (2017) A review on Geotrichum lipases: production, purification, immobilization and applications. Chem Biochem Eng Q J 30(4):439–454
Mansour S, Beckerich JM, Bonnarme P (2008) Lactate and amino acid catabolism in the cheese-ripening yeast Yarrowia lipolytica. Appl Environ Microbiol 74(21):6505–6512
Marshall RJ (2002) Beer: quality, safety and nutritional aspects. J Hum Nutr Diet 15(5):391
McSweeney PLH, Ottogalli G, Fox PF (2004) Diversity of cheese varieties: an overview. Cheese 2:1–23
Mohanty AK, Mukhopadhyay UK, Grover S, Batish VK (1999) Bovine chymosin: production by RDNA technology and application in cheese manufacture. Biotechnol Adv 17:205–217
Mojsov K (2013) Use of enzymes in wine making: a review. Int J Manag IT Eng 3(9):112–127
Monnet C, Dugat-Bony E, Swennen D, Beckerich J-M, Irlinger F, Fraud S, Bonnarme P (2016) Investigation of the activity of the microorganisms in a reblochon-style cheese by metatranscriptomic analysis. Front Microbiol 7:536
Mounier J, Rea MC, O’Connor PM, Fitzgerald GF, Cogan TM (2007) Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese. Appl Environ Microbiol 73:7732–7739
Mounier J, Coton M, Irlinger F, Landaud S, Bonnarme P (2017) Smear-ripened cheeses. Elsevier, pp 955–996. Academic Press
Miller SM, & Magasanik BORIS (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172(9):4927–4935
Mulholland, Law, (1994) Peptidases from lactococci and secondary proteolysis of milk proteins, In biochemistry of milk proteins, eds. A.T. Andrews & J. Varley, Royal Society of Chemistry, Cambridge, pp 83–93
Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474
Pearce C (1997) Advances in applied microbiology, vol 44. Springer
Pignede G, Wang HJ, Fudalej F, Seman M, Gaillardin C, Nicaud JM (2000) Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol 66:3283–3289
Pollock JRA (1979) Brewing science. Academic Press, London
Polonsky J, Merrien MA, Scott PM (1977) Roquefortine and isofumigaclavine alkaloids from Penicillium roqueforti. Ann Nutr Aliment 31(4–6):963–968
Products, F. Mulholland-Biochemistry of Milk and undefined 1994 (n.d.) Peptidases from lactococci and secondary proteolysis. Books.Google.Com
Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB (2013) Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC genomics 14(1):541
Rojas-Aedo JF, Gil-Durán C, Del-Cid A, Valdés N, Pamela Á, Vaca I, García-Rico RO, Levicán G, Tello M, Chávez R (2017) The biosynthetic gene cluster for andrastin a in Penicillium roqueforti. Front Microbiol 8:813
Rosenberg M, Altemueller A (2001) Accumulation of free L-glutamic acid in full- and reduced-fat cheddar cheese ripened at different time/temperature conditions. LWT Food Sci Technol 34(5):279–287
Roth E, Schwenninger SM, Hasler M, Eugster-Meier E, Lacroix C (2010) Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis. BMC Microbiol 10(1):74
Seratlić SV, Miloradović ZN, Radulović ZT, Maćej OD (2011) The effect of two types of mould inoculants on the microbiological composition, physicochemical properties and protein hydrolysis in two Gorgonzola-type cheese varieties during ripening. Int J Dairy Technol 64(3):408–416
Sinsabaugh RS (1994) Enzymic analysis of microbial pattern and process. Biol Fertil Soils 17(1):69–74
Sørensen LM, Gori K, Petersen MA, Jespersen L, Arneborg N (2011) Flavour compound production by Yarrowia lipolytica, Saccharomyces cerevisiae and Debaryomyces hansenii in a cheese-surface model. Int Dairy J 21:970–978
Sreekrishna K, Dickson RC (1985) Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc Natl Acad Sci U S A 82(23):7909–7913
Torrent C, Gil-Durán C, Rojas-Aedo JF, Medina E, Vaca I, Castro P, García-Rico RO, Cotoras M, Mendoza L, Levicán G, Chávez R (2017) Role of Sfk1 gene in the filamentous fungus Penicillium roqueforti. Front Microbiol 8:2424
Trotter PJ (2001) The genetics of fatty acid metabolism in Saccharomyces cerevisiae. Annu Rev Nutr 21:97–119
Tymoczko JL, Berg JM, Stryer L (2002) Biochemistry, 5th edn. Freeman, New York
Vernet T, Ziomek E, Recktenwald A, Schrag JD, De Montigny C, Tessier DC, Thomas DY, Cygler M (1993) Cloning and expression of Geotrichum candidum lipase II gene in yeast: probing of the enzyme active site by site-directed mutagenesis. J Biol Chem 268(35):26212–26219
Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70(11):6738–6747
Yu XJ, Li HJ, Li J, Chi ZM (2010a) Overexpression of acid protease of Saccharomycopsis fibuligera in Yarrowia lipolytica and characterization of the recombinant acid protease for skimmed milk clotting. Biotechnol Bioprocess Eng 15:467–475
Yu XJ, Madzak C, Li HJ, Chi ZM, Li J (2010b) Surface display of acid protease on the cells of Yarrowia lipolytica for milk clotting. Appl Microbiol Biotechnol 87:669–677
Yu XJ, Chi Z, Wang F, Li J, Chi ZM, Madzak C (2013) Expression of the acid protease gene from Saccharomycopsis fibuligera in the marine-derived Yarrowia lipolytica for both milk clotting and single cell protein production. Appl Biochem Biotechnol 169:1993–2003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rathnayake, A.U. et al. (2020). Fungal Genes Encoding Enzymes Used in Cheese Production and Fermentation Industries. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-41870-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41869-4
Online ISBN: 978-3-030-41870-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)