Skip to main content

Fungal Production of Prebiotics

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Functional foods are nowadays very popular due to their health benefits, and they confer to their consumers. The most important functional food gaining wide acceptance is prebiotics. Various oligosaccharides are exhibiting prebiotic effect on their consumers.

The prominent and most predominating type of prebiotics is the fructooligosaccharides (FOS). FOS are naturally occurring in plants, fruits, vegetables, and animal products. The microbial enzymes are of prime importance in synthesis and industrial production of prebiotics. Apart from microbes, plants also have enzymes for synthesis of prebiotics.

Among microbes, fungal enzymes are much preferred as industrial tool for prebiotic synthesis. Fungal enzymes exhibit favorable characteristics to withstand industrial environmental conditions.

This chapter deals with production of prebiotics with special reference to FOS by fungi, nature of the fungal enzyme, its mechanism of action, types of products, production of Ftase, and production of fructooligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aehle W (2004) Enzymes in industry. Weinheim, Germany: Wiley–VCH. 144 p

    Google Scholar 

  • Álvaro-Benito M, de Abreu M, Fernández-Arrojo L, Plou FJ, Jiménez-Barbero J, Ballesteros A, Polaina J, Fernández-Lobato M (2007) Characterization of a β-fructofuranosidase from Schwanniomyces occidentalis with transfructosylating activity yielding the prebiotic 6-kestose. J Biotechnol 132(1):75–81

    Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, SimalGandara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    CAS  Google Scholar 

  • Bearing FJ (1953) Mold glucosaccharase: a fructosidase. Biochem J 55:93

    Google Scholar 

  • Bearing FJ, Bacon JSD (1953) The action of mold enzymes on sucrose. Biochem J 53:277–285

    Google Scholar 

  • Belorkar SA (2018) Purification and characterization of fructosyltransferase : a low molecular weight enzyme from Aspergillus niger NFCCI2736". Res J Biotechnol In press

    Google Scholar 

  • Belorkar SA, Gupta AK, Rai V (2015) Enhancement of extracellular fructosyltransferase production by Aspergillus stallus through batch fermentation. Journal of Pure and Applied Microbiology 10(1):649–656

    Google Scholar 

  • Belorkar SA, Gupta AK (2016) Oligosaccharides: a boon form nature’s desk. AMB Expr 6:82. https://doi.org/10.1186/s13568-016-0253-5

    Article  CAS  Google Scholar 

  • Castro CC, Nobre C, Duprez ME, De Weireld G, Hantson AL (2017) Screening and selection of potential carriers to immobilize Aureobasidiumpullulans cells for fructo-oligosaccharides production. Biochem Eng J 118:82–90. https://doi.org/10.1016/j.bej.2016.11.011

    Article  CAS  Google Scholar 

  • Chapla DK, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour Technol 115:215–221

    CAS  PubMed  Google Scholar 

  • Chen WC (1995) Production of b-fructofuranosidase by Aspergillusjaponicus in batch and fed-batch cultures. Biotechnol Lett 17:1221–1924

    Google Scholar 

  • Chen WC, Liu CH (1996) Production of b-fructofuranosidase by Aspergillusjaponicus. Enzym Microb Technol 18:153–160

    CAS  Google Scholar 

  • Chen H-L, Lu Y-H, Jiun-Lin, Ko L-Y (2000) Effects of fructooligosaccharide on bowel function and indicators of nutritional status in constipated elderly men. Nutr Res 20(12):1725–1733

    Google Scholar 

  • Chien CS, Lee WC, Lin TJ (2001) Immobilization of Aspergillusjaponicus by entrapping cells in gluten for production of fructooligosaccharides. Enzym Microb Technol 29:252–257

    CAS  Google Scholar 

  • Cmelik R, Chmelik J (2010) Structural analysis and differentiation of reducing and nonreducing neutral model starch oligosaccharides by negative-ion electrospray ionization ion-trap mass spectrometry. Int J Mass Spectrom 291:33–40

    CAS  Google Scholar 

  • Dake MS, Kumar G (2012) Partial purification and characterization of fructosyltransferase from Aureobasidiumpullulans. Int J Sci Environ Technol 1:88–98

    Google Scholar 

  • Dhake AB, Patil MB (2007) Effect of substrate feeding on production of fructosyltransferase by Penicilliumpurpurogenum. Braz J Microbiol 38:194–199

    Google Scholar 

  • Dias LG, Veloso ACA, Correia DM, Rocha O, Torres D, Rocha I (2009) UV spectrophotometry method for the monitoring of galacto-oligosaccharides production. Food Chem 113:246–252

    CAS  Google Scholar 

  • Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance feed utilization, intestinal histology and gut micro biota of gilthead sea bream (Sparusaurata). Aquaculture 300:182–188

    CAS  Google Scholar 

  • Edelman J, Dickerson AG (1996) The metabolism of fructose polymers in plants transfructosylation in tubers of Helianthus tuberosus L. Biochem J 98:787–794

    Google Scholar 

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531

    CAS  Google Scholar 

  • Edelman J, Recaldin DACL, Dickerson AG (1963) The metabolism of fructose polymers in plants. The activity of 1F– fructosylsucrose/sucrosetransfructosylation in living tissue of Helianthus tuberosus L. Bull Res Counc Isr 11A4:275–278

    Google Scholar 

  • Eseceli H, Demir E, Degirmencioglu N, Bilgic M (2010) The effects of bio-Mosmannan oligosaccharide and antibiotic growth promoter performance of broilers. J Anim Vet Adv 9:392–395

    CAS  Google Scholar 

  • Fernandez RC, Maresma BG, Juarez A, Martinez J (2003) Production of fructooligosaccharides by β-fructofuranosidase from Aspergillus sp.27 H. J Chem Technol Biotechnol 79:268–272. https://doi.org/10.1002/jctb.967

    Article  CAS  Google Scholar 

  • Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M (2001) Inulin and oligofructose as dietary fibre: a review of evidence. CRC Crit Rev Food Sci Nutr 41:353–362

    CAS  Google Scholar 

  • Fric P (2007) Probiotics and prebiotics—renaissance of a therapeutic principle. Cent Eur J Med 2:237–270

    Google Scholar 

  • Ghazi I, Fernandez-Arrojo L, Garcia-Arellano H, Ferrer M, Ballesteros A, Plou FJ (2007) Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. J Biotechnol 128:204–211. https://doi.org/10.1016/j.jbiotec.2006.09.017PubMedCrossRefGoogleScholar

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microflora: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Giese EC, Dekker RFH, Barbosa AM, Corradi da Silva MDL, Silva RD (2011) Production of β-(1,3)-glucanases by Trichoderma harzianum rifai: optimization and application to produce Gluco-oligosaccharides from Paramylon and Pustulan. Ferment Technol 1:1

    Google Scholar 

  • Gomi K (1999) Aspergillusoryzae. In: Robinson R, Batt CA, Patel PD (eds) Encyclopedia of food microbiology, vol 2. Academic Press, London, pp 66–71

    Google Scholar 

  • Hayashi S, Yoshiyama T, Fujii N, Shirohara S (2000) Production of a novel syrup containing neofructooligosaccharides by the cells of Penicilliumcitrinum. Biotechnol Lett 22:1465–1469

    CAS  Google Scholar 

  • Hendro SM, Toharisman TA (2008) Isolation of Aspergillusnigerfor producing fructosyltransferase enzyme. Sugar research abstracts, Indonesian Sugar Research Institute

    Google Scholar 

  • Hernalsteens S, Maugeri F (2010) Partial purification and characterization of extracellular fructofuranosidase with transfructosylating activity from Candidasp. Food Bioprocess Technol 3:568–576

    CAS  Google Scholar 

  • Hirayama M, Sumi N, Hidaka H (1989) Purification and properties of a fructooligosaccharide -producing beta-fructofuranosidase from Aspergillusniger ATCC 20611. Agric Biol Chem Tokyo 53:667–673. https://doi.org/10.1080/00021369.1989.10869350

    Article  CAS  Google Scholar 

  • Jung KH, Yun WJ, Kang KR, Lim JY, Lee JH (1989) Mathematical model for enzymatic production of fructooligosaccharides from sucrose (1994). Enzym Microb Technol 11:491–494

    CAS  Google Scholar 

  • Katapodis P, Kalogeris E, Kekos D, Macris BJ (2004) Biosynthesis of fructo-oligosaccharides by Sporotrichum thermophile during submerged batch cultivation in high sucrose media. Appl Microbiol Biotechnol 63:378–382

    CAS  PubMed  Google Scholar 

  • Kurakake M, Masumoto R, Maguma K, Kamata A, Saito E, Ukita N, Komaki T (2010) Production of Fructooligosaccharides by β-Fructofuranosidases from Aspergillusoryzae KB. J Agric Food Chem 58(1):488–492. https://doi.org/10.1021/jf903303w

    Article  CAS  PubMed  Google Scholar 

  • L’Hocine L, Jiang ZWB, Xu S (2000) Purification and partial characterization of fructosyltransferase and invertase from Aspergillusniger AS0023. J Biotechnol 81:73–84

    PubMed  Google Scholar 

  • Lateef A, Oloke JK, Prapulla SG (2007) The effect of ultrasonication on the release of fructosyltransferase from Aureobasidiumpullulans CFR 77. Enzym Microb Technol 40:1067–1070

    CAS  Google Scholar 

  • Lee VJ, Coussement P, Leenheer DL (1995) On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit Rev Food Sci Nutr 35:525–552

    Google Scholar 

  • Li T, Li S, Du L, Wang N, Guo M, Zhang J, Yan F, Zhang H (2010) Effects of low pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chem 121:1010–1013

    CAS  Google Scholar 

  • Mabel MJ, Sangeetha PT, Kalpana P, Srinivasan K, Prapulla SG (2007) Physicochemical characterization of Fructo-oligosaccharides and evaluation of their suitability as a potential sweetener for diabetic. Carbohydr Res 343:56–66

    PubMed  Google Scholar 

  • Macfarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJS, Cohen GM (2008) Receptor-selective TRAIL mutants target lymphoid tumor cells for apoptosis via TRAIL-R1: implications for therapy. Toxicology 253:6–7

    CAS  Google Scholar 

  • Mano MCR, Neri-Numa IA, da Silva JB et al (2018) Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 102:17. https://doi.org/10.1007/s00253-017-8564–2

    Google Scholar 

  • Menezes B, Rossi DM, Ayub MAZ (2017) Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates. World J Microbiol Biotechnol 33:58. https://doi.org/10.1016/j.biortech.2011.10.083

    Article  CAS  Google Scholar 

  • Moreno FJ, Corzo N, Montilla A, Villamiel M, Olano A (2017) Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 13:50–55

    Google Scholar 

  • Moure A, Gullon P, Dominguez H, Parajo JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    CAS  Google Scholar 

  • Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68:587–597

    CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Increase in the fructo-oligosaccharides yield and productivity by solid-state fermentation with Aspergillusjaponicus using agro-industrial residues as support and nutrient source. Biochem Eng J 53:154–157

    CAS  Google Scholar 

  • Nabarlatz D, Ebringerova A, Montane D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr Polym 69:20–28

    CAS  Google Scholar 

  • Nacos MK, Katapodis P, Pappas C, Daferera D, Tarantilis PA, Christakopoulos P (2006) Kenafxylan—a source of biologically active acidic oligosaccharides. Carbohydr Polym 66:126–134

    CAS  Google Scholar 

  • Nguyen QD, Szabo JMR, Bhat MK, Hoschke AP (2005) Purification and some properties of b-fructofuranosidase from Aspergillusniger IMI303386. Process Biochem 40:2461–2466

    CAS  Google Scholar 

  • Okada H, Fukushi E, Yamamori A, Kawazoe N, Onodera S, Kawabata J, Shiomi N (2010) Novel fructopyranose oligosaccharides isolated from fermented beverage of plant extract. Carbohydr Res 345:414–418

    CAS  PubMed  Google Scholar 

  • Patil MB, Butle A (2014) Fructosyltransferase production by indigenously isolated Syncephalastrumracemosum Cohn. J Global Biosci 3:597–603

    Google Scholar 

  • Qiang X, YongLie C, QianBing W (2009) Health benefit application of functional oligosaccharides. Carbohydr Polym 77:435–441. https://doi.org/10.1016/j.carbpol.2009.03.016

    Article  CAS  Google Scholar 

  • Quigley EMM (2010) Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 61:213–218

    PubMed  Google Scholar 

  • Rajoka MI, Yasmeen A (2005) Improved productivity of bfructofuranosidase by a derepressed mutant of Aspergillusniger from conventional and non-conventional substrates. World J Microbiol Biotechnol 21:471–478

    CAS  Google Scholar 

  • Roberfroid MB, Delzenne N (1998) Dietary fructans. Annu Rev Nutr 18:117–143

    CAS  PubMed  Google Scholar 

  • Roberfroid M, Slavin J (2000) Nondigestible oligosaccharides. Crit Rev Food Sci Nutr 40(6):461–480

    Google Scholar 

  • Roberfroid MB, Van Loo JAE, Gibson GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr 128:11–19

    CAS  PubMed  Google Scholar 

  • Saminathan M, Sieo CC, Kalavathy R, Abdullah N, Ho YW (2011) Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens. Afr J Microbiol Res 5:57–64

    Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla S (2002) Influence of media components and reaction parameters on the production of fructosyl transferase and fructooligosaccharides. Sci Aliment 22(3):277–287

    Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004a) Production of fructo-oligosaccharides by fructosyltransferase from Aspergillusoryzae CFR 202 and Aureobasidiumpullulans CFR 77. Process Biochem 39:753–758

    CAS  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2004b) Production of fructosyltransferase by Aspergillusoryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol 65:530–537

    CAS  PubMed  Google Scholar 

  • Sangeetha PT, Ramesh MN, Prapulla SG (2005) Maximization of fructooligosaccharide production by two stage continuous process and its scale up. J Food Eng 68:57–64

    Google Scholar 

  • Shin HT, Baig SY, Lee SW, Suh DS, Kwon ST, Lin YB, Lee JH (2004) Production of fructo-oligosaccharides from molasses by Aureobasidiumpullulans cells. Bioresour Technol 93:59–62

    CAS  PubMed  Google Scholar 

  • Straathof AJJ, Kieboom APG, Van BH (1986) Invertase-catalysed fructosyl transfer in concentrated solutions of sucrose. Carbohydr Res 146:154–159

    CAS  PubMed  Google Scholar 

  • Takeda H, Sato K, Kinoshita S, Sasaki H (1994) Production of 1-kestose by scopulariopsisbrevicaulis. J Ferment Bioeng 77:386–389

    CAS  Google Scholar 

  • Van Balken J, Van Dooren T, Van Den TW, Kamphuis J, Meijer EM (1991) Production of 1-kestose with intact mycelium of Aspergillusphoenicis containing sucrose-1fructosyltransferase. Appl Microbiol Biotechnol 35:216–221

    Google Scholar 

  • Vanda’kova M, Platkova M, Antosˇova M, Ba´les V, Polakovic M (2004) Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidiumpullulans. Chem Pap 58(1):15–22

    Google Scholar 

  • Vilches F, Ravanal MC, Eyzaguirre DGNJ (2018) Penicillium purpurogenum produces a novel endo-1,5-arabinanase, active on debranched arabinan, short arabinooligosaccharides and on the artificial substrate p-nitrophenyl arabinofuranoside. Carbohydr Res 455:106–113. https://doi.org/10.1016/j.carres.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  • Wang X-D, Rakshit SK (1999) Improved extracellular transferase enzyme production by Aspergillus foetidus for synthesis of isooligosaccharides. Bioprocess Eng 20(5):429–434

    Google Scholar 

  • Wang XD, Rakshit SK (2000) Iso-oligosaccharide production by multiple forms of transferase enzymes from Aspergillusfoetidus. Process Biochem 35:771–775

    CAS  Google Scholar 

  • Wang LM, Zhou HM (2006) Isolation and identification of a novel Aspergillusjaponicus JN19 producing b-fructofuranosidase and characterization of the enzyme. J Food Biochem 30:641–658

    Google Scholar 

  • Weijers CAGM, Franssen MCR, Visser GM (2008) Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnol Adv 26:436–456

    CAS  PubMed  Google Scholar 

  • Xie YJ, Zhou HX, Liu CX, Zhang J, Li N, Zhao ZL, Sun GY, Zhong YH (2017) A molasses habitat-derived fungus Aspergillustubingensis XG21 with high beta-fructofuranosidase activity and its potential use for fructooligosaccharides production. AMB Expr 7:128. https://doi.org/10.1186/s13568-017-0428-8

    Article  CAS  Google Scholar 

  • Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2007) Purification and some properties of β-fructofuranosidase I formed by Aureobasidium pullulans DSM 2404. J Biosci Bioeng 103(5):491–493

    Google Scholar 

  • Yun JW (1996) Fructooligosaccharides—occurrence, preparation, and application. Enzym Microb Technol 19:107–117

    CAS  Google Scholar 

  • Yun JW, Jung KH, Oh JW, Lee JH (1990) Semibatch production of fructo-oligosaccharides from sucrose by immobilized cells ofAureobasidium pullulans. Appl Biochem Biotechnol 24–25(1):299–308

    Google Scholar 

  • Yun JW, Jung KH, Jeon YJ, Lee JH (1992) Continuous production of fructo-oligosaccharides from sucrose by immobilized cells of Aureobasidiumpullulans. J Microbiol Biotechnol 2:98–101

    CAS  Google Scholar 

  • Yun JW, Kim DH, Kim BW, Song SK (1997) Comparison of sugar compositions between inulo- and fructo-oligosaccharides produced by different enzyme forms. Biotechnol Lett 19:553–556

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belorkar, S.A. (2020). Fungal Production of Prebiotics. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_10

Download citation

Publish with us

Policies and ethics