Skip to main content

Doubled Haploid Technology for Rapid and Efficient Maize Breeding

  • 712 Accesses

Abstract

Doubled haploid (DH) technology is becoming an integral part of maize breeding programs worldwide due to the various advantages it offers, including its quick and efficient development of completely homozygous inbred lines. Use of DH lines compared to use of conventional inbred lines developed through recurrent self-pollinations enables maize breeding programs to reduce the time and cost of product development, besides simplified logistics and increased selection efficiency. In combination with molecular marker technologies, DH can greatly accelerate genetic gains. However, adoption of DH technology in maize breeding programs depends on reliable and cost-efficient production of DH lines at scale. DH technology has significantly evolved over the last five to six decades. Various methods have been reported for haploid induction, identification of putative haploids, and chromosome doubling. Recent advances in the DH process have increased the reliability and efficiency of DH line production in maize germplasm. Development of new haploid inducers with high haploid induction rates (HIRs) and adapted to different target environments has facilitated increased adoption of DH technology in new environments. Haploid identification is being optimized using different genetic markers, and nongenetic methods (including automation), thereby reducing the cost and time expended in haploid identification. Achieving high rates of chromosomal doubling and use of less-toxic chemicals are other important areas for continuous process improvement. In this chapter, the various steps involved in maize DH line production, the technological improvements that have happened at each step, and the advantages of using DH lines in maize breeding are discussed.

Keywords

  • Maize
  • Doubled haploids
  • In vivo haploid induction
  • Haploid identification
  • Chromosomal doubling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-41866-3_11
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-41866-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12

References

  • Aman MA, Sarkar KR (1978) Selection for haploidy inducing potential in maize. Indian J Genet Plant Breed 38:452–457

    Google Scholar 

  • Ao GM, Zhao S, Li GH (1982) In vitro induction of haploid plantlets from unpollinated ovaries of corn (Zea mays L.). Acta Gen Sin 9:281–283

    Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Sec 12:31–37

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Barret P, Brinkman M, Dufour P et al (2004) Identification of candidate genes for in vitro androgenesis induction in maize. Theor Appl Genet 109:1660–1668

    CAS  PubMed  CrossRef  Google Scholar 

  • Barret P, Brinkmann M, Beckert M (2008) A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor Appl Genet 117:581–594

    CAS  PubMed  CrossRef  Google Scholar 

  • Böhm J, Schipprack W, Utz HF et al (2017) Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theor Appl Genet 130(5):861–873

    PubMed  CrossRef  Google Scholar 

  • Boote BW, Freppon DJ, De La Fuente GN et al (2016) Haploid differentiation in maize kernels based on fluorescence imaging. Plant Breed 135:439–445

    CAS  CrossRef  Google Scholar 

  • Bordes J, Charmet G, de Vaulx RD et al (2006) Doubled haploid versus S1 family recurrent selection for testcross performance in a maize population. Theor Appl Genet 112:1063–1072

    CAS  PubMed  CrossRef  Google Scholar 

  • Bordes J, Charmet G, de Vaulx RD et al (2007) Doubled-haploid versus single-seed descent and S1-family variation for testcross performance in a maize population. Euphytica 154:41–51

    CrossRef  Google Scholar 

  • Brettel RIS, Thomas E, Wernicke W (1981) Production of haploid maize plants by anther culture. Maydica 26:101–111

    Google Scholar 

  • Büter B (1997) In vitro haploid production in maize. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic, Dordrecht, pp 37–71

    CrossRef  Google Scholar 

  • Bylich VG, Chalyk ST (1996) Existence of pollen grains with a pair of morphologically different sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line. Maize Genet Coop Newsl 70:33

    Google Scholar 

  • Cardwell VB (1982) Fifty years of Minnesota corn production: sources of yield increase. Agron J 74:984–990

    CrossRef  Google Scholar 

  • Chaikam V, Mahuku G (2012) Chromosome doubling of maternal haploids. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F, pp 24–29

    Google Scholar 

  • Chaikam V, Prasanna BM (2012) Maternal haploid detection using anthocyanin markers. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F, pp 20–23

    Google Scholar 

  • Chaikam V, Nair SK, Babu R et al (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128:159–171

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaikam V, Martinez L, Melchinger AE et al (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Sci 56:1678–1688

    CAS  CrossRef  Google Scholar 

  • Chaikam V, Lopez LA, Martinez L et al (2017) Identification of in vivo induced maternal haploids in maize using seedling traits. Euphytica 213:177

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaikam V, Nair S, Martinez L et al (2018) Marker-assisted breeding of improved maternal haploid inducers in maize for the tropical/subtropical regions. Front Plant Sci 9:1527

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chaikam V, Gowda M, Nair SK et al (2019) Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica 215:138

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Chaikam V (2012) In vivo maternal haploid induction in maize. Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, DF, 14–9.

    Google Scholar 

  • Chalyk ST (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79(1–2):13–18.

    CrossRef  Google Scholar 

  • Chalyk ST (1999) Creating new haploid-inducing lines of maize. Maize Genet Coop Newsl 73:53

    Google Scholar 

  • Chalyk ST (2000) Obtaining fertile pollen in maize maternal haploids. Maize Genet Coop Newsl 74:17–18

    Google Scholar 

  • Chalyk S, Baumann A, Daniel G, Eder J (2003) Aneuploidy as a possible cause of haploid-induction in maize. Maize Genet Coop Newsl 77:29

    Google Scholar 

  • Chase SS (1949) Spontaneous doubling of the chromosome complement in monoploid sporophytes of maize. Proc Iowa Acad Sci 56:113–115

    Google Scholar 

  • Chase SS (1964a) Parthenogenesis. Maize Genet Coop News Lett 38:46

    Google Scholar 

  • Chase SS (1964b) Monoploids and diploids of maize: a comparison of genotypic equivalents. Am J Bot 51:928–933

    CrossRef  Google Scholar 

  • Chase SS (1969) Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot Rev 35:117–168

    CrossRef  Google Scholar 

  • Chen S, Song T (2003) Identification haploid with high oil xenia effect in maize. Acta Agron Sin 4:19

    Google Scholar 

  • Chen S, Li L, Li H (2009) Maize doubled haploid breeding (in Chinese). China Agricultural University Press, Beijing

    Google Scholar 

  • Choe E, Carbonero CH, Mulvaney K et al (2012) Improving in vivo maize doubled haploid production efficiency through early detection of false positives. Plant Breed 131:399–401

    CrossRef  Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    CrossRef  Google Scholar 

  • De La Fuente GN, Carstensen JM, Edberg MA, Lübbestedt T (2017) Discrimination of haploid and diploid maize kernels via multispectral imaging. Plant Breed 136:50–60

    CrossRef  CAS  Google Scholar 

  • De La Fuente GN, Frei UK, Trampe B et al (2018) A diallel analysis of a maize donor population response to in vivo maternal haploid induction: I. Inducibility. Crop Sci 58(5):1830–1837

    CrossRef  Google Scholar 

  • Deimling S, Röber F, Geiger HH (1997) Methodik und genetik der in-vivo-haploideninduktion bei mais. Vor Pflanzenzüchtg 38:203–224

    Google Scholar 

  • Dong X, Xu X, Miao J et al (2013) Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor Appl Genet 126:1713–1720

    CAS  PubMed  CrossRef  Google Scholar 

  • Dong X, Xu X, Li L et al (2014) Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol Breed 34:1147–1158

    CAS  CrossRef  Google Scholar 

  • Dresselhaus T, Sprunck S (2012) Plant fertilization: maximizing reproductive success. Curr Biol 22:R487–R489

    CAS  PubMed  CrossRef  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    CAS  PubMed  CrossRef  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    CrossRef  Google Scholar 

  • Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • FAO (2018) FAO Statistical Database. FAO, Rome, Italy

    Google Scholar 

  • Fischer E (2004) Molecular genetic studies on the occurrence of paternal DNA transmission during in vivo haploid induction in maize (Zea mays). Doctoral dissertation, University of Hohenheim, Germany

    Google Scholar 

  • Fischer RA, Byerlee D, Edmeades G (2014) Crop yields and global food security. ACIAR, Canberra, ACT, pp 8–11

    Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Gallais A, Bordes J (2007) The use of doubled haploids in recurrent selection and hybrid development in maize. Crop Sci 47:S190

    CrossRef  Google Scholar 

  • Gayen P, Madan JK, Kumar R, Sarkar KR (1994) Chromosome doubling in haploids through colchicine. Maize Genet Coop Newsl 68:65

    Google Scholar 

  • Geiger HH (2009) Doubled haploids. In: Bennetzen JL, Hake S (eds) Handbook of maize. Springer, New York, pp 641–657

    CrossRef  Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–489

    Google Scholar 

  • Geiger HH, Roux SR, Deimling S (1994) Herbicide resistance as a marker in screening for maternal haploids. Maize Genet Coop Newsl 68:99

    Google Scholar 

  • Geiger HH, Braun MD, Gordillo GA et al (2006) Variation for female fertility among haploid maize lines. Maize Genet Coop Newsl 80:28

    Google Scholar 

  • Genovesi AD, Collins GB (1982) In vitro production of haploid plants of corn via anther culture 1. Crop Sci 22:1137–1144

    CrossRef  Google Scholar 

  • Gilles LM, Khaled A, Laffaire J, et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize EMBO J 36:707-717

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gordillo GA, Geiger HH (2008) Optimization of DH-line based recurrent selection procedures in maize under a restricted annual loss of genetic variance. Euphytica 161:141–154

    CrossRef  Google Scholar 

  • Greenblatt IM, Bock M (1967) A commercially desirable procedure for detection of monoploids in maize. J Hered 58:9–13

    CrossRef  Google Scholar 

  • Hallauer AR, Carena MJ, de Miranda Filho JB (2010) Quantitative genetics in maize breeding. Iowa State University Press, Ames, IA

    Google Scholar 

  • Hu H, Schrag TA, Peis R et al (2016) The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 202:1267–1276

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1:273–282

    CrossRef  Google Scholar 

  • Jensen CJ (1974) Chromosome doubling techniques in haploids. In: Kasha KJ (ed) Haploids in higher plants. University of Guelph, Guelph, pp 153–190

    Google Scholar 

  • Jumbo M, Weldekidan T, Holland JB, Hawk JA (2011) Comparison of conventional, modified single seed descent, and doubled haploid breeding methods for maize inbred line development using germplasm enhancement of maize breeding crosses. Crop Sci 51:1534–1543

    CrossRef  Google Scholar 

  • Kato A (2006) Chromosome doubling method. US Patent 7135,615 B2, 14 Nov

    Google Scholar 

  • Kato A, Geiger HH (2002) Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breed 121:370–377

    CrossRef  Google Scholar 

  • Kebede AZ, Dhillon BS, Schipprack W et al (2011) Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica 180:219–226

    CrossRef  Google Scholar 

  • Kelliher T, Starr D, Richbourg L et al (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109

    CAS  PubMed  CrossRef  Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    CAS  PubMed  CrossRef  Google Scholar 

  • Kermicle JL (1971) Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Am J Bot 58:1–7

    CrossRef  Google Scholar 

  • Kermicle J (1973) Androgenesis and the indeterminate gametophyte mutation: source of the cytoplasm. Maize Genet Coop Newsl 47:208–209

    Google Scholar 

  • Kermicle JL (1994) Indeterminate gametophyte (ig): biology and use. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 388–393

    CrossRef  Google Scholar 

  • Kitamura S, Akutsu M, Okazaki K (2009) Mechanism of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sexual Plant Reproduction 22(1):9–14

    PubMed  CrossRef  CAS  Google Scholar 

  • Kleiber D, Prigge V, Melchinger AE et al (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630

    CrossRef  Google Scholar 

  • Lashermes P, Beckert M (1988) Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76:405–410

    CAS  PubMed  CrossRef  Google Scholar 

  • Li L, Xu X, Jin W, Chen S (2009) Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 230:367–376

    CAS  PubMed  CrossRef  Google Scholar 

  • Li X, Meng D, Chen S et al (2017) Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nat Commun 8:991

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Liu Z-Z, Song T-M (2000) The breeding and identification of haploid inducer with high frequency parthenogenesis in maize. Acta Agron Sin 26:570–574

    Google Scholar 

  • Liu C, Chen B, Ma Y et al (2017) New insight into the mechanism of heterofertilization during maize haploid induction. Euphytica 213:174

    CrossRef  CAS  Google Scholar 

  • Liu L, Li W, Liu C et al (2018) In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize. BMC Plant Biol 18:313

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Longin CFH (2008) Optimum allocation of test resources and comparison of alternative breeding schemes for hybrid maize breeding with doubled haploids. Doctoral dissertation, University of Hohenheim, Germany

    Google Scholar 

  • Lübberstedt T, Frei UK (2012) Application of doubled haploids for target gene fixation in backcross programmes of maize. Plant Breed 131:449–452

    CrossRef  Google Scholar 

  • Ma H, Li G, Würschum T et al (2018) Genome-wide association study of haploid male fertility in maize (Zea mays L.). Front Plant Sci 9:974

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mahuku G (2012) Putative DH seedlings: from the lab to the field. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F., pp 30–38

    Google Scholar 

  • Mayor PJ, Bernardo R (2009) Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci 49:1719–1725

    CrossRef  Google Scholar 

  • Melchinger AE, Schipprack W, Würschum T et al (2013) Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Sci Rep 3:2129

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Melchinger AE, Schipprack W, Friedrich Utz H, Mirdita V (2014) In vivo haploid induction in maize: identification of haploid seeds by their oil content. Crop Sci 54:1497–1504

    CrossRef  Google Scholar 

  • Melchinger A, Molenaar W, Mirdita V, Schipprack W (2016a) Colchicine alternatives for chromosome doubling in maize haploids for doubled haploid production. Crop Sci 56:1–11

    CrossRef  CAS  Google Scholar 

  • Melchinger AE, Brauner PC, Böhm J, Schipprack W (2016b) In vivo haploid induction in maize: comparison of different testing regimes for measuring haploid induction rates. Crop Sci 56:1127–1135

    CAS  CrossRef  Google Scholar 

  • Melchinger AE, Munder S, Mauch FJ et al (2017) High-throughput platform for automated sorting and selection of single seeds based on time-domain nuclear magnetic resonance (TD-NMR) measurement of oil content. Biosyst Eng 164:213–220

    CrossRef  Google Scholar 

  • Melchinger AE, Böhm J, Utz HF et al (2018) High-throughput precision phenotyping of the oil content of single seeds of various oilseed crops. Crop Sci 58:670–678

    CAS  CrossRef  Google Scholar 

  • Molenaar WS, Schipprack W, Melchinger AE (2018) Nitrous oxide-induced chromosome doubling of maize haploids. Crop Sci 58:650–659

    CrossRef  CAS  Google Scholar 

  • Molenaar WS, de Oliveira Couto EG, Piepho H et al (2019) Early diagnosis of ploidy status in doubled haploid production of maize by stomata length and flow cytometry measurements. Plant Breed 138:266

    CrossRef  Google Scholar 

  • Nair SK, Chaikam V, Gowda M et al. (2020) Genetic dissection of maternal influence on in vivo haploid induction in maize. The Crop Journal (in press)

    Google Scholar 

  • Nair SK, Molenaar W, Melchinger AE et al (2017) Dissection of a major QTL qhir1 conferring maternal haploid induction ability in maize. Theor Appl Genet 130:1113–1122

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nanda DK, Chase SS (1966) An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci 6:213–215

    CrossRef  Google Scholar 

  • Pace GM, Reed JN, Ho LC, Fahey JW (1987) Anther culture of maize and the visualization of embryogenic microspores by fluorescent microscopy. Theor Appl Genet 73:863–869

    CAS  PubMed  CrossRef  Google Scholar 

  • Pogna NE, Marzetti A (1977) Frequency of two tubes in in vitro germinated pollen grains. Maize Genet Coop Newslett 51:44

    Google Scholar 

  • Pollacsek M (1992) Management of the ig gene for haploid induction in maize. Agronomie 12:247–251

    CrossRef  Google Scholar 

  • Prasanna BM (2011) Maize in the developing world: trends, challenges, and opportunities. In: Zaidi PH et al (eds) Extended summaries, 11th Asian maize conference, Nanning, China, pp 26–38

    Google Scholar 

  • Prasanna BM (2012) Doubled haploid technology in maize breeding: an overview. In: Prasanna BM, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F., pp 1–8

    Google Scholar 

  • Prasanna BM, Pixley K, Warburton ML et al (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26:339–356

    CAS  CrossRef  Google Scholar 

  • Preciado-Ortiz RE, García-Lara S, Ortiz-Islas S et al (2013) Response of recurrent selection on yield, kernel oil content and fatty acid composition of subtropical maize populations. Field Crops Res 142:27–35

    CrossRef  Google Scholar 

  • Prigge V, Melchinger AE (2012) Production of haploids and doubled haploids in maize. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols. Springer, New York, pp 161–172

    CrossRef  Google Scholar 

  • Prigge V, Sánchez C, Dhillon BS et al (2011) Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51:1498–1506

    CrossRef  Google Scholar 

  • Prigge V, Schipprack W, Mahuku G et al (2012a) Development of in vivo haploid inducers for tropical maize breeding programs. Euphytica 185:481–490

    CrossRef  Google Scholar 

  • Prigge V, Xu X, Li L et al (2012b) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Qiu F, Liang Y, Li Y et al (2014) Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Curr Plant Biol 1:83–90

    CrossRef  Google Scholar 

  • Ren J, Wu P, Tian X et al (2017a) QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theor Appl Genet 130:1349–1359

    CAS  PubMed  CrossRef  Google Scholar 

  • Ren J, Wu P, Trampe B et al (2017b) Novel technologies in doubled haploid line development. Plant Biotechnol J 15:1361–1370

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Röber FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50:275

    Google Scholar 

  • Rosegrant MR, Ringler C, Sulser TB et al (2009) Agriculture and food security under global change: prospects for 2025/2050. International Food Policy Research Institute, Washington, DC, pp 145–178

    Google Scholar 

  • Rotarenco V, Eder J (2003) Possible effects of heterofertilization on the induction of maternal haploids in maize. Maize Genet Coop Newsl 77:30

    Google Scholar 

  • Rotarenco VA, Kirtoca IH, Jacota AG (2007) Using oil content to identify kernels with haploid embryos. Maize Genet Coop Newsl 81:11

    Google Scholar 

  • Rotarenco VA, Dicu G, State D, Fuia S (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newsl 84:15

    Google Scholar 

  • Sarkar KR, Coe EH Jr (1966) A genetic analysis of the origin of maternal haploids in maize. Genetics 54:453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar KR, Panke S, Sachan JKS (1972) Development of maternal-haploidy-inducer lines in maize (Zea mays L.). Indian J Agric Sci 42:781–786

    Google Scholar 

  • Schmidt W (2003) Hybridmaiszüchtung bei der KWS SAAT AG. In: Bericht über die Arbeitstagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs. Gumpenstein, Österreich, pp 1–6

    Google Scholar 

  • Schneerman MC, Charbonneau M, Weber DF (2000) A survey of ig containing materials. Maize Genet Coop Newsl 74:54–55

    Google Scholar 

  • Seitz G (2005) The use of doubled haploids in corn breeding. In: Proc. 41st Annual Illinois Corn Breeders’ School 2005, Urbana-Champaign, Illinois, pp 1–7

    Google Scholar 

  • Shamina NV, Shatskaya OA (2011) Two novel meiotic restitution mechanisms in haploid maize (Zea mays L.). Russ J Genet 47:438

    CAS  CrossRef  Google Scholar 

  • Shatskaya OA (2010) Haploinductors isolation in maize: three cycles of selection on high frequency of induction of matroclinal haploids. Agric Biol 5:79–86

    Google Scholar 

  • Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur 3:307

    CrossRef  Google Scholar 

  • Sleper JA, Bernardo R (2016) Recombination and genetic variance among maize doubled haploids induced from F1 and F2 plants. Theor Appl Genet 129:2429–2436

    CAS  PubMed  CrossRef  Google Scholar 

  • Smelser A, Blanco M, Lübberstedt T et al (2015) Weighing in on a method to discriminate maize haploid from hybrid seed. Plant Breed 134:283–285

    CAS  CrossRef  Google Scholar 

  • Spitkó T, Sagi L, Pintér J et al (2006) Haploid regeneration aptitude of maize (Zea mays L.) lines of various origin and of their hybrids. Maydica 51:537

    Google Scholar 

  • Strigens A, Schipprack W, Reif JC, Melchinger AE (2013) Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One 8:e57234

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Swapna M, Sarkar KR (2012) Anomalous fertilization in haploidy inducer lines in maize (Zea mays L). Maydica 56(3)

    Google Scholar 

  • Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell Tissue Organ Cult 84:233–237

    CrossRef  Google Scholar 

  • Testillano P, Georgiev S, Mogensen HL et al (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma 112:342–349

    CAS  PubMed  CrossRef  Google Scholar 

  • Tian X, Qin Y, Chen B et al (2018) Hetero-fertilization together with failed egg–sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. J Exp Bot 69(20):ery177

    CrossRef  CAS  Google Scholar 

  • Truong-Andre I, Demarly Y (1984) Obtaining plants by in vitro culture of unfertilized maize ovaries (Zea mays L.) and preliminary studies on the progeny of a gynogenetic plant. Z Pflanzenzilcht 92:309–320

    Google Scholar 

  • Wan Y, Duncan DR, Rayburn AL et al (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet 81:205–211

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang H, Liu J, Xu X et al (2016) Fully-automated high-throughput NMR system for screening of haploid kernels of maize (corn) by measurement of oil content. PLoS One 11:e0159444

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wang X-Y, Liao W-X, An D, Wei Y-G (2018) Maize haploid identification via LSTM-CNN and hyperspectral imaging technology. arXiv Prepr arXiv180509105

    Google Scholar 

  • Weber DF (2014) Today’s use of haploids in corn plant breeding. In: Sparks DL (ed) Advances in agronomy, 123rd edn. Academic, Cambridge, pp 123–144

    Google Scholar 

  • Wedzony M, Röber FK, Geiger HH (2002) Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: XVIIth International Congress on sex plant reproduction. Maria Curie-Sklodowska University Press, Lublin

    Google Scholar 

  • Wilde K, Burger H, Prigge V et al (2010) Testcross performance of doubled-haploid lines developed from European flint maize landraces. Plant Breed 129:181–185

    CAS  CrossRef  Google Scholar 

  • Wu P, Li H, Ren J, Chen S (2014) Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 196:413–421

    CrossRef  Google Scholar 

  • Wu P, Ren J, Tian X et al (2017) New insights into the genetics of haploid male fertility in maize. Crop Sci 57:637–647

    CrossRef  Google Scholar 

  • Xu X, Li L, Dong X et al (2013) Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J Exp Bot 64:1083–1096

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yan G, Liu H, Wang H et al (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yang J, Qu Y, Chen Q, Tang J et al (2019) Genetic dissection of haploid male fertility in maize (Zea mays L.). Plant Breed 138:258–265

    Google Scholar 

  • Yu W, Birchler JA (2016) A green fluorescent protein-engineered haploid inducer line facilitates haploid mutant screens and doubled haploid breeding in maize. Mol Breed 36:1–12

    CrossRef  CAS  Google Scholar 

  • Zabirova ER, Chumak MV, Shatskaia OA, Scherbak VS (1996) Technology of the mass accelerated production of homozygous lines. Kukuruza Sorgo N 4:17–19

    Google Scholar 

  • Zavalishina A, Tyrnov V (1984) Inducing high frequency of matroclinal haploids in maize. Dokl Akad Nauk SSSR 276:735–738

    Google Scholar 

  • Zhang Z, Qiu F, Liu Y et al (2008) Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep 27:1851–1860

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhao X, Xu X, Xie H et al (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol 163:721–731

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zhong Y, Liu C, Qi X et al (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5(6):575

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

The work on maize DH technology at CIMMYT reported here was supported mainly by Bill and Melinda Gates Foundation (BMGF) through the project “A Doubled Haploid Facility for Strengthening Maize Breeding Programs in Africa” (OPP1028335) and by BMGF and the U.S. Agency for International Development (USAID) through the project “Stress Tolerant Maize for Africa (STMA)” (OPP1134248). Additional support came from the CGIAR Research Program on Maize (MAIZE); the MasAgro-Maize project, which was funded by the Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), the Government of Mexico; and Limagrain. MAIZE receives W1 and W2 support from the Governments of Australia, Belgium, Canada, China, France, India, Japan, Korea, Mexico, the Netherlands, New Zealand, Norway, Sweden, Switzerland, the U.K., and the U.S. and the World Bank. The authors acknowledge the contributions of Sudha Nair, Manje Gowda, Leocadio Martinez, Luis Antonio Lopez, Sotero Bumagat, John Ochieng, and Hamilton Amoshe Omar to the work reported in this article on maize DH technology at CIMMYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Prasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chaikam, V., Prasanna, B.M. (2020). Doubled Haploid Technology for Rapid and Efficient Maize Breeding. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41866-3_11

Download citation