Skip to main content

Failure Modes of Implanted Neural Interfaces

  • Chapter
  • First Online:
Neural Interface Engineering

Abstract

Implanted neural interfaces represent a rapidly growing field, which includes deep brain, peroneal, phrenic, and vagus nerve stimulators, while substantial research efforts have been invested in the development of experimental applications, such as cortical prostheses, retinal prostheses, spinal cord stimulators, etc. The aim of the present chapter is to provide a gap analysis of the field and to debate where future efforts must be directed. The presented gap analysis is intended to informing preventive actions or design decisions for further improvement of the design, fabrication, and exploitation methods of implants. The development of more compliant electrodes remains the main technological challenge. In our view, more efforts in the understanding of the mechanical interactions of an electrode with the surrounding tissue are necessary in order to achieve the next technological breakthrough. The systematic analysis of failure modes of neural interfaces appears to be a key enabling factor for further progress in the field and overall device improvements. Enabling such analysis calls for the implementation of more comprehensive reporting systems, capturing the necessary information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The lay public recognized the importance of the power supply and often referred to the pacemaker as an implanted “battery.” Later, and with the appearance of applications, such as the cochlear implant, power was supplied by transcutaneous means. The emphasis was put on the anatomically shaped electrode, hence the cochlear prosthesis.

  2. 2.

    https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.CFM

  3. 3.

    Renewed in 2018 – https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm348890.pdf

References

  • Abbott, N. J. (2000). Inflammatory mediators and modulation of blood-brain barrier permeability. Cellular and Molecular Neurobiology, 20(2), 131–147.

    Article  Google Scholar 

  • Agarwal, G., Wilfong, A. A., & Edmonds, J. L. (2011). Surgical revision of vagus nerve stimulation electrodes in children. Otolaryngology and Head and Neck Surgery, 144(1), 123–124.

    Article  Google Scholar 

  • Almassi, G. H., Olinger, G. N., Wetherbee, J. N., & Fehl, G. (1993). Long-term complications of implantable cardioverter defibrillator lead systems. The Annals of Thoracic Surgery, 55(4), 888–892.

    Article  Google Scholar 

  • Andrei, A., Welkenhuysen, M., Nuttin, B., & Eberle, W. (2012). A response surface model predicting the in vivo insertion behavior of micromachined neural implants. Journal of Neural Engineering, 9(1), 016005.

    Article  Google Scholar 

  • Aregueta-Robles, U. A., Woolley, A. J., Poole-Warren, L. A., Lovell, N. H., & Green, R. A. (2014). Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering, 7(15), 1–18.

    Google Scholar 

  • Arle, J. E., Mei, L. Z., & Shils, J. L. (2008). Modeling parkinsonian circuitry and the DBS electrode. I. Biophysical background and software. Stereotactic and Functional Neurosurgery, 86(1), 1–15.

    Article  Google Scholar 

  • Arnoldner, C., Baumgartner, W. D., Gstoettner, W., & Hamzavi, J. (2005). Surgical considerations in cochlear implantation in children and adults: A review of 342 cases in Vienna. Acta Oto-Laryngologica, 125(3), 228–234.

    Article  Google Scholar 

  • Azemi, E., Lagenaur, C. F., & Cui, X. T. (2011). The surface immobilization of the neural adhesion molecule L1 on neural probes and its effect on neuronal density and gliosis at the probe/tissue interface. Biomaterials, 32(3), 681–692.

    Article  Google Scholar 

  • Baer, G. A., Talonen, P. P., Shneerson, J. M., Markkula, H., Exner, G., & Wells, F. C. (1990). Phrenic nerve stimulation for central ventilatory failure with bipolar and four-pole electrode systems. Pacing and Clinical Electrophysiology, 13(8), 1061–1072.

    Article  Google Scholar 

  • Balasingam, V., Tejada-Berges, T., Wright, E., Bouckova, R., & Yong, V. W. (1994). Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. The Journal of Neuroscience, 14(2), 846–856.

    Article  Google Scholar 

  • Balkany, T. J., Hodges, A. V., Gomez-Marin, O., Bird, P. A., Dolan-Ash, S., Butts, S., et al. (1999). Cochlear reimplantation. The Laryngoscope, 109(3), 351–355.

    Article  Google Scholar 

  • Barrese, J. C., Rao, N., Paroo, K., Triebwasser, C., Vargas-Irwin, C., Franquemont, L., et al. (2013). Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. Journal of Neural Engineering, 10(6), 066014.

    Article  Google Scholar 

  • Barriga-Rivera, A., Bareket, L., Goding, J., Aregueta-Robles, U. A., & Suaning, G. J. (2017). Visual prosthesis: Interfacing stimulating electrodes with retinal neurons to restore vision. Frontiers in Neuroscience [Internet], 11. [cited 2017 Nov 29]. Available from: https://www.frontiersin.org/articles/10.3389/fnins.2017.00620/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_468898_55_Neuros_20171128_arts_A.

  • Basta, D., Gröschel, M., & Ernst, A. (2018). Central and peripheral aspects of noise-induced hearing loss. HNO, 66(5), 342–349.

    Article  Google Scholar 

  • Battmer, R. D., Gnadeberg, D., Lehnhardt, E., & Lenarz, T. (1994). An integrity test battery for the nucleus mini 22 cochlear implant system. European Archives of Oto-Rhino-Laryngology, 251(4), 205–209.

    Article  Google Scholar 

  • Bedell, H. W., Song, S., Li, X., Molinich, E., Lin, S., Stiller, A., et al. (2018). Understanding the effects of both CD14-mediated innate immunity and device/tissue mechanical mismatch in the neuroinflammatory response to intracortical microelectrodes. Frontiers in Neuroscience, 12, 772.

    Article  Google Scholar 

  • Ben-Menachem, E., Revesz, D., Simon, B. J., & Silberstein, S. (2015). Surgically implanted and non-invasive vagus nerve stimulation: A review of efficacy, safety and tolerability. European Journal of Neurology, 22(9), 1260–1268.

    Article  Google Scholar 

  • Beric, A., Kelly, P. J., Rezai, A., Sterio, D., Mogilner, A., Zonenshayn, M., et al. (2001). Complications of deep brain stimulation surgery. Stereotactic and Functional Neurosurgery, 77(1–4), 73–78.

    Article  Google Scholar 

  • Bewernick, B., & Schlaepfer, T. E. (2015). Update on neuromodulation for treatment-resistant depression. F1000Research, 4, 1389.

    Article  Google Scholar 

  • Biran, R., Martin, D. C., & Tresco, P. A. (2007). The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. Journal of Biomedical Materials Research. Part A, 82(1), 169–178.

    Article  Google Scholar 

  • Bjornsson, C. S., Oh, S. J., Al Kofahi, Y. A., Lim, Y. J., Smith, K. L., Turner, J. N., et al. (2006). Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. Journal of Neural Engineering, 3(3), 196–207.

    Article  Google Scholar 

  • Blomstedt, P., & Hariz, M. I. (2005). Hardware-related complications of deep brain stimulation: A ten year experience. Acta Neurochirurgica (Wien), 147(10), 1061–1064.

    Article  Google Scholar 

  • Boehler, C., Kleber, C., Martini, N., Xie, Y., Dryg, I., Stieglitz, T., et al. (2017). Actively controlled release of dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials, 129, 176–187.

    Article  Google Scholar 

  • Borretzen, M. N., Bjerknes, S., Saehle, T., Skjelland, M., Skogseid, I. M., Toft, M., et al. (2014). Long-term follow-up of thalamic deep brain stimulation for essential tremor - patient satisfaction and mortality. BMC Neurology, 14(1), 120:1–13.

    Article  Google Scholar 

  • Branner, A., & Normann, R. A. (2000). A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats. Brain Research Bulletin, 51(4), 293–306.

    Article  Google Scholar 

  • Burdick, A. P., Okun, M. S., Haq, I. U., Ward, H. E., Bova, F., Jacobson, C. E., et al. (2010). Prevalence of Twiddler’s syndrome as a cause of deep brain stimulation hardware failure. Stereotactic and Functional Neurosurgery, 88(6), 353–359.

    Article  Google Scholar 

  • Burns, B. D., Stean, J. P., & Webb, A. C. (1974). Recording for several days from single cortical neurons in completely unrestrained cats. Electroencephalography and Clinical Neurophysiology, 36(3), 314–318.

    Article  Google Scholar 

  • Capadona, J. (2018). Anti-inflammatory approaches to mitigate the Neuroinflammatory response to brain-dwelling intracortical microelectrodes. Journal of Immunological Sciences., 2(4), 15–21.

    Article  Google Scholar 

  • Cervera-Paz, F. J., Manrique, M., Huarte, A., Garcia, F. J., Garcia-Tapia, R. (1999). Study of surgical complications and technical failures (correction of technical defects) of cochlear implants (published erratum appears in Acta Otorrinolaringol Esp 2000;51(1):96). Acta Otorrinolaringologica Espanola, 50(7), 519–24.

    Google Scholar 

  • Chou, C. K., McDougall, J. A., & Chan, K. W. (1997). RF heating of implanted spinal fusion stimulator during magnetic resonance imaging. IEEE Transactions on Biomedical Engineering, 44(5), 367–373.

    Article  Google Scholar 

  • Christie, I. N., Wells, J. A., Southern, P., Marina, N., Kasparov, S., Gourine, A. V., et al. (2013). fMRI response to blue light delivery in the naïve brain: Implications for combined optogenetic fMRI studies. NeuroImage, 66, 634–641.

    Article  Google Scholar 

  • Cody, P. A., Eles, J. R., Lagenaur, C. F., Kozai, T. D. Y., & Cui, X. T. (2018). Unique electrophysiological and impedance signatures between encapsulation types: An analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. Biomaterials [Internet], 161, 117–128. [cited 2018 Oct 23]. Available from: http://www.sciencedirect.com/science/article/pii/S0142961218300310.

    Article  Google Scholar 

  • Cohen, E. D. (2009). Effects of high-level pulse train stimulation on retinal function. Journal of Neural Engineering, 6(3), 035005.

    Article  Google Scholar 

  • Connell, S. S., Balkany, T. J., Hodges, A. V., Telischi, F. F., Angeli, S. I., & Eshraghi, A. A. (2008). Electrode migration after cochlear implantation. Otology and Neurotology., 29(2), 156–159.

    Article  Google Scholar 

  • Couch, J. D., Gilman, A. M., & Doyle, W. K. (2016). Long-term expectations of vagus nerve stimulation: A look at battery replacement and revision surgery. Neurosurgery, 78(1), 42–46.

    Article  Google Scholar 

  • Czerny, C., Gstoettner, W., Adunka, O., Hamzavi, J., & Baumgartner, W. D. (2000). Postoperative imaging and evaluation of the electrode position and depth of insertion of multichannel cochlear implants by means of high-resolution computed tomography and conventional X-rays. Wiener klinische Wochenschrift, 112(11), 509–511.

    Google Scholar 

  • Daubert, J. C., Behaghel, A., Leclercq, C., & Mabo, P. (2014). Future of implantable electrical cardiac devices. Bulletin de l’Académie Nationale de Médecine, 198(3), 473–487.

    Article  Google Scholar 

  • de Donaldson, N. N., Perkins, T. A., & Worley, A. C. (1997). Lumbar root stimulation for restoring leg function: Stimulator and measurement of muscle actions. Artificial Organs, 21(3), 247–249.

    Article  Google Scholar 

  • De Ferrari, G. M., Stolen, C., Tuinenburg, A. E., Wright, D. J., Brugada, J., Butter, C., et al. (2017). Long-term vagal stimulation for heart failure: Eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. International Journal of Cardiology [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0167527317312950.

  • Degenhart, A. D., Eles, J., Dum, R., Mischel, J. L., Smalianchuk, I., Endler, B., et al. (2016). Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. Journal of Neural Engineering., 13(4), 046019.

    Article  Google Scholar 

  • Dickey, A. S., Suminski, A., Amit, Y., & Hatsopoulos, N. G. (2009). Single-unit stability using chronically implanted multielectrode arrays. Journal of Neurophysiology, 102(2), 1331–1339.

    Article  Google Scholar 

  • Dlouhy, B. J., Viljoen, S. V., Kung, D. K., Vogel, T. W., Granner, M. A., Howard, M. A., III, et al. (2012). Vagus nerve stimulation after lead revision. Neurosurgical Focus, 32(3), E11.

    Article  Google Scholar 

  • Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J., & BeMent, S. L. (1988). Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Transactions on Biomedical Engineering, 35(9), 719–732.

    Article  Google Scholar 

  • Du, Z. J., Kolarcik, C. L., Kozai, T. D. Y., Luebben, S. D., Sapp, S. A., Zheng, X. S., et al. (2017). Ultrasoft microwire neural electrodes improve chronic tissue integration. Acta Biomaterialia, 53, 46–58.

    Article  Google Scholar 

  • Englot, D. J., Glastonbury, C. M., & Larson, P. S. (2011). Abnormal t(2)-weighted MRI signal surrounding leads in a subset of deep brain stimulation patients. Stereotactic and Functional Neurosurgery, 89(5), 311–317.

    Article  Google Scholar 

  • Fleury Curado, T., Oliven, A., Sennes, L. U., Polotsky, V. Y., Eisele, D., & Schwartz, A. R. (2018). Neurostimulation treatment of OSA. Chest, 154(6), 1435–1447.

    Article  Google Scholar 

  • Formento, E., Minassian, K., Wagner, F., Mignardot, J. B., Le Goff-Mignardot, C. G., Rowald, A., et al. (2018). Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nature Neuroscience, 21(12), 1728–1741.

    Article  Google Scholar 

  • Fountas, K. N., & Smith, J. R. (2007). Subdural electrode-associated complications: A 20-year experience. Stereotactic and Functional Neurosurgery, 85(6), 264–272.

    Article  Google Scholar 

  • Freire, M. A. M., Morya, E., Faber, J., Santos, J. R., Guimaraes, J. S., Lemos, N. A. M., et al. (2011). Comprehensive analysis of tissue preservation and recording quality from chronic multielectrode implants. PLoS One, 6(11), e27554.

    Article  Google Scholar 

  • Fung, Y.-C. (1993). Biomechanics: Mechanical properties of living tissues [Internet]. New York: Springer. [cited 2019 Jan 1]. Available from: http://public.eblib.com/choice/publicfullrecord.aspx?p=3084753.

    Book  Google Scholar 

  • Gaylor, J. M., Raman, G., Chung, M., Lee, J., Rao, M., Lau, J., et al. (2013). Cochlear implantation in adults: A systematic review and meta-analysis. JAMA Otolaryngology. Head & Neck Surgery, 139(3), 265–272.

    Article  Google Scholar 

  • Ghika, J., Villemure, J. G., Fankhauser, H., Favre, J., Assal, G., & Ghika, S. F. (1998). Efficiency and safety of bilateral contemporaneous pallidal stimulation (deep brain stimulation) in levodopa-responsive patients with Parkinson’s disease with severe motor fluctuations: A 2-year follow-up review. Journal of Neurosurgery, 89(5), 713–718.

    Article  Google Scholar 

  • Gilletti, A., & Muthuswamy, J. (2006). Brain micromotion around implants in the rodent somatosensory cortex. Journal of Neural Engineering, 3(3), 189–195.

    Article  Google Scholar 

  • Giordano, F., Zicca, A., Barba, C., Guerrini, R., & Genitori, L. (2017). Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia, 58(Suppl 1), 85–90.

    Article  Google Scholar 

  • Glazier, D. S. (2018). Rediscovering and reviving old observations and explanations of metabolic scaling in living systems. Systems., 6(4), 28.

    Google Scholar 

  • Gold, M. R., Van Veldhuisen, D. J., Hauptman, P. J., Borggrefe, M., Kubo, S. H., Lieberman, R. A., et al. (2016). Vagus nerve stimulation for the treatment of heart failure: The INOVATE-HF trial. Journal of the American College of Cardiology [Internet]., 68(2), 149–158. Available from: http://www.sciencedirect.com/science/article/pii/S0735109716324044.

    Article  Google Scholar 

  • Gomez, D. R., Poenisch, F., Pinnix, C. C., Sheu, T., Chang, J. Y., Memon, N., et al. (2013). Malfunctions of implantable cardiac devices in patients receiving proton beam therapy: Incidence and predictors. International Journal of Radiation Oncology, Biology, Physics, 87(3), 570–575.

    Article  Google Scholar 

  • Gossman, M. S., Ketkar, A., Liu, A. K., & Olin, B. (2012). Vagus nerve stimulator stability and interference on radiation oncology x-ray beams. Physics in Medicine & Biology, 57(20), N365–N376.

    Article  Google Scholar 

  • Goss-Varley, M., Shoffstall, A. J., Dona, K. R., McMahon, J. A., Lindner, S. C., Ereifej, E. S., et al. (2018). Rodent behavioral testing to assess functional deficits caused by microelectrode implantation in the rat motor cortex. Journal of Visualized Experiments, 18(138).

    Google Scholar 

  • Graczyk, E. L., Delhaye, B. P., Schiefer, M. A., Bensmaia, S. J., & Tyler, D. J. (2018). Sensory adaptation to electrical stimulation of the somatosensory nerves. Journal of Neural Engineering, 15(4), 046002.

    Article  Google Scholar 

  • Graham, J. M., East, C. A., & Fraser, J. G. (1989). UCH/RNID single channel cochlear implant: surgical technique. The Journal of Laryngology and Otology. Supplement, 18, 14–19.

    Google Scholar 

  • Grand, L., Wittner, L., Herwik, S., Göthelid, E., Ruther, P., Oscarsson, S., et al. (2010). Short and long term biocompatibility of NeuroProbes silicon probes. Journal of Neuroscience Methods, 189(2), 216–229.

    Article  Google Scholar 

  • Greenberg, A. B., Myers, M. W., Hartshorn, D. O., Miller, J. M., & Altschuler, R. A. (1992). Cochlear electrode reimplantation in the guinea pig. Hearing Research, 61(1–2), 19–23.

    Article  Google Scholar 

  • Grimonprez A, Raedt R, De Taeye L, Larsen LE, Delbeke J, Boon P, et al. (2014). A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation. Int. J Neural Syst. 2015 Sep 14;25(8(1550034)):1–10.

    Google Scholar 

  • Gu, Y., Dee, C. M., & Shen, J. (2011). Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Frontiers in Bioscience (School Edition), 3, 1216–1231.

    Article  Google Scholar 

  • Gunasekera, B., Saxena, T., Bellamkonda, R., & Karumbaiah, L. (2015). Intracortical recording interfaces: Current challenges to chronic recording function. ACS Chemical Neuroscience [Internet], 6(1):68–83. Available from: https://doi.org/10.1021/cn5002864.

  • Günter, C., Delbeke, J., & Ortiz-Catalan, M. (2019). Safety of long-term electrical peripheral nerve stimulation: Review of the state of the art. Journal of Neuroengineering and Rehabilitation, 16(1), 13.

    Article  Google Scholar 

  • Hammer, N., Glatzner, J., Feja, C., Kuhne, C., Meixensberger, J., Planitzer, U., et al. (2015). Human vagus nerve branching in the cervical region. PLoS One, 10(2), e0118006. 1–13.

    Article  Google Scholar 

  • Hariz, M. I. (2002). Complications of deep brain stimulation surgery. Movement Disorders, 17(Suppl 3), S162–S166.

    Article  Google Scholar 

  • He, W., McConnell, G. C., & Bellamkonda, R. V. (2006). Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. Journal of Neural Engineering, 3(4), 316–326.

    Article  Google Scholar 

  • Henle, C., Raab, M., Cordeiro, J. G., Doostkam, S., Schulze-Bonhage, A., Stieglitz, T., et al. (2011). First long term in vivo study on subdurally implanted Micro-ECoG electrodes, manufactured with a novel laser technology. Biomedical Microdevices., 13(1), 59–68.

    Article  Google Scholar 

  • Henson, A. M., Slattery, W. H., III, Luxford, W. M., & Mills, D. M. (1999). Cochlear implant performance after reimplantation: A multicenter study. The American Journal of Otology, 20(1), 56–64.

    Article  Google Scholar 

  • Heo, D. N., Song, S.-J., Kim, H.-J., Lee, Y. J., Ko, W.-K., Lee, S. J., et al. (2016). Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Acta Biomaterialia, 39, 25–33.

    Article  Google Scholar 

  • Hermann, J. K., Lin, S., Soffer, A., Wong, C., Srivastava, V., Chang, J., et al. (2018). The role of toll-like receptor 2 and 4 innate immunity pathways in intracortical microelectrode-induced neuroinflammation. Frontiers in Bioengineering and Biotechnology, 6, 113.

    Article  Google Scholar 

  • Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.

    Article  Google Scholar 

  • Holecko, M. M., Williams, J. C., & Massia, S. P. (2005). Visualization of the intact interface between neural tissue and implanted microelectrode arrays. Journal of Neural Engineering, 2(4), 97–102.

    Article  Google Scholar 

  • Holubec, T., Ursprung, G., Schonrath, F., Caliskan, E., Steffel, J., Falk, V., et al. (2015). Does implantation technique influence lead failure? Acta Cardiologica, 70(5), 581–586.

    Article  Google Scholar 

  • Hosseini, N. H., Hoffmann, R., Kisban, S., Stieglitz, T., Paul, O., & Ruther, P. (2007). Comparative study on the insertion behavior of cerebral microprobes. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 4711–4714.

    Google Scholar 

  • Hsieh, H.-L., & Yang, C.-M. (2013). Role of redox signaling in neuroinflammation and neurodegenerative diseases. BioMed Research International, 2013, 484613.

    Google Scholar 

  • Ishida, K., Shinkawa, A., Sakai, M., Tamura, Y., & Naito, A. (1997). Cause and repair of flap necrosis over cochlear implant. The American Journal of Otology, 18(4), 472–474.

    Google Scholar 

  • Janson, C., Maxwell, R., Gupte, A. A., & Abosch, A. (2010). Bowstringing as a complication of deep brain stimulation: Case report. Neurosurgery, 66(6), E1205.

    Article  Google Scholar 

  • Joint, C., Nandi, D., Parkin, S., Gregory, R., & Aziz, T. (2002). Hardware-related problems of deep brain stimulation. Movement Disorders, 17(Suppl 3), S175–S180.

    Article  Google Scholar 

  • Jorfi, M., Skousen, J. L., Weder, C., & Capadona, J. R. (2015). Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. Journal of Neural Engineering, 12(1), 1–46. https://doi.org/10.1088/1741-2560/12/1/011001.

    Article  Google Scholar 

  • Josset, P., Meyer, B., Gegu, D., & Chouard, C. H. (1984). Implant material tolerance. Acta Oto-Laryngologica. Supplementum (Stockh), 411(9002-84-0 (Polytetrafluoroethylene)), 45–52.

    Google Scholar 

  • Kahlow, H., & Olivecrona, M. (2013). Complications of vagal nerve stimulation for drug-resistant epilepsy: A single center longitudinal study of 143 patients. Seizure, 22(10), 827–833.

    Article  Google Scholar 

  • Kanaan, N., Winkel, A., Stumpp, N., Stiesch, M., & Lenarz, T. (2013). Bacterial growth on cochlear implants as a potential origin of complications. Otology & Neurotology, 34(3), 539–543.

    Article  Google Scholar 

  • Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E. A., et al. (2013). Relationship between intracortical electrode design and chronic recording function. Biomaterials, 34(33), 8061–8074.

    Article  Google Scholar 

  • Kelly, S. K., Ellersick, W. F., Krishnan, A., Doyle, P., Shire, D. B., Wyatt, J. L., et al. (2014). Redundant safety features in a high-channel-count retinal neurostimulator. IEEE Biomedical Circuits and Systems Conference., 2014, 216–219.

    Google Scholar 

  • Kempf, H. G., Johann, K., & Lenarz, T. (1999). Complications in pediatric cochlear implant surgery. European Archives of Otorhinolaryngology, 256(3), 128–132.

    Article  Google Scholar 

  • Kilgore, K. L., Peckham, P. H., Keith, M. W., Montague, F. W., Hart, R. L., Gazdik, M. M., et al. (2003). Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. Journal of Rehabilitation Research and Development, 40(6), 457–468.

    Article  Google Scholar 

  • Kim, Y.-T., Hitchcock, R. W., Bridge, M. J., & Tresco, P. A. (2004). Chronic response of adult rat brain tissue to implants anchored to the skull. Biomaterials, 25(12), 2229–2237.

    Article  Google Scholar 

  • Kimberley, T. J., Pierce, D., Prudente, C. N., Francisco, G. E., Yozbatiran, N., Smith, P., et al. (2018). Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke. Stroke, 49(11), 2789–2792.

    Article  Google Scholar 

  • Kirkhorn, T., Almquist, L. O., Persson, H. W., & Holmer, N. G. (1997). An experimental high energy therapeutic ultrasound equipment: Design and characterisation. Medical & Biological Engineering & Computing, 35(3), 295–299.

    Article  Google Scholar 

  • Koeneman, B. A., Lee, K. K., Singh, A., He, J., Raupp, G. B., Panitch, A., et al. (2004). An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures. Journal of Neuroscience Methods, 137(2), 257–263.

    Article  Google Scholar 

  • Koller, W. C., Lyons, K. E., Wilkinson, S. B., Troster, A. I., & Pahwa, R. (2001). Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Movement Disorders, 16(3), 464–468.

    Article  Google Scholar 

  • Kotecha, R., Berriochoa, C. A., Murphy, E. S., Machado, A. G., Chao, S. T., Suh, J. H., et al. (2016). Report of whole-brain radiation therapy in a patient with an implanted deep brain stimulator: Important neurosurgical considerations and radiotherapy practice principles. Journal of Neurosurgery, 124(4), 966–970.

    Article  Google Scholar 

  • Kovach, K. M., Kumsa, D. W., Srivastava, V., Hudak, E. M., Untereker, D. F., Kelley, S. C., et al. (2016). High-throughput in vitro assay to evaluate the cytotoxicity of liberated platinum compounds for stimulating neural electrodes. Journal of Neuroscience Methods, 273, 1–9.

    Article  Google Scholar 

  • Kozai, T. (2018). The history and horizons of microscale neural interfaces. Micromachines, 9(9), 445.

    Article  Google Scholar 

  • Kozai, T. D. Y., Vazquez, A. L., Weaver, C. L., Kim, S.-G., & Cui, X. T. (2012). In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. Journal of Neural Engineering, 9(6), 066001.

    Article  Google Scholar 

  • Kozai, T. D. Y., Li, X., Bodily, L. M., Caparosa, E. M., Zenonos, G. A., Carlisle, D. L., et al. (2014). Effects of caspase-1 knockout on chronic neural recording quality and longevity: Insight into cellular and molecular mechanisms of the reactive tissue response. Biomaterials, 35(36), 9620–9634.

    Article  Google Scholar 

  • Krishna, V., Sammartino, F., King, N. K. K., So, R. Q. Y., & Wennberg, R. (2016). Neuromodulation for epilepsy. Neurosurgery Clinics of North America, 27(1), 123–131.

    Article  Google Scholar 

  • Kumar, K., Nath, R., & Wyant, G. M. (1991). Treatment of chronic pain by epidural spinal cord stimulation: A 10-year experience. Journal of Neurosurgery, 75(3), 402–407.

    Article  Google Scholar 

  • Kumar, K., Toth, C., Nath, R. K., & Laing, P. (1998). Epidural spinal cord stimulation for treatment of chronic pain--some predictors of success a 15-year experience. Surgical Neurology, 50(2), 110–120.

    Article  Google Scholar 

  • Kuperstein, M., & Eichenbaum, H. (1985). Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode. Neuroscience, 15(3), 703–712.

    Article  Google Scholar 

  • Lacour, S. P., Courtine, G., & Guck, J. (2016). Materials and technologies for soft implantable neuroprostheses. Nature Reviews Materials, 1.

    Google Scholar 

  • Lam, S., Lin, Y., Curry, D. J., Reddy, G. D., & Warnke, P. C. (2016). Revision surgeries following vagus nerve stimulator implantation. Journal of Clinical Neuroscience, 30, 83–87.

    Article  Google Scholar 

  • Lasala, A. F., Fieldman, A., Diana, D. J., & Humphrey, C. B. (1979). Gas pocket causing pacemaker malfunction. Pacing and Clinical Electrophysiology, 2(2), 183–185.

    Article  Google Scholar 

  • Lecomte, A., Descamps, E., & Bergaud, C. (2018). A review on mechanical considerations for chronically-implanted neural probes. Journal of Neural Engineering, 15(3), 031001.

    Article  Google Scholar 

  • Lee, H. C., Ejserholm, F., Gaire, J., Currlin, S., Schouenborg, J., Wallman, L., et al. (2017). Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response? Journal of Neural Engineering., 14(3), 036026.

    Article  Google Scholar 

  • Lewis, P. M., Ackland, H. M., Lowery, A. J., & Rosenfeld, J. V. (2015). Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses. Brain Research [Internet], 1595, 51–73. [cited 2017 Jul 3]. Available from: http://www.sciencedirect.com/science/article/pii/S0006899314015674.

    Article  Google Scholar 

  • Liu, X., McCreery, D. B., Carter, R. R., Bullara, L. A., Yuen, T. G., & Agnew, W. F. (1999). Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Transactions on Rehabilitation Engineering, 7(3), 315–326.

    Article  Google Scholar 

  • Liu, X., Demosthenous, A., & Donaldson, N. (2007). Implantable stimulator failures: Causes, outcomes, and solutions. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5786–5790.

    Google Scholar 

  • Lotan, G., & Vaiman, M. (2015). Treatment of epilepsy by stimulation of the vagus nerve from head-and-neck surgical point of view. The Laryngoscope, 125(6), 1352–1355.

    Article  Google Scholar 

  • Lotti, F., Ranieri, F., Vadalà, G., Zollo, L., & Di Pino, G. (2017). Invasive intraneural interfaces: Foreign body reaction issues. Frontiers in Neuroscience, 11, 497.

    Article  Google Scholar 

  • Ludwig, K. A., Langhals, N. B., Joseph, M. D., Richardson-Burns, S. M., Hendricks, J. L., & Kipke, D. R. (2011). Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. Journal of Neural Engineering, 8(1), 014001:1–8.

    Article  Google Scholar 

  • Luetje, C. M., & Jackson, K. (1997). Cochlear implants in children: What constitutes a complication? Otolaryngology Head and Neck Surgery, 117(3 Pt 1), 243–247.

    Article  Google Scholar 

  • Lyons, K. E., Koller, W. C., Wilkinson, S. B., & Pahwa, R. (2001). Long term safety and efficacy of unilateral deep brain stimulation of the thalamus for parkinsonian tremor. Journal of Neurology, Neurosurgery, and Psychiatry, 71(5), 682–684.

    Article  Google Scholar 

  • Mahmood, I. (2018). Misconceptions and issues regarding allometric scaling during the drug development process. Expert Opinion on Drug Metabolism & Toxicology, 14(8), 843–854.

    Article  Google Scholar 

  • Mancini, M., Moresi, M., & Rancini, R. (1999). Mechanical properties of alginate gels: Empirical characterisation. Journal of Food Engineering., 39(4), 369–378.

    Article  Google Scholar 

  • Martin, K. D., Polanski, W. H., Schulz, A.-K., Jöbges, M., Hoff, H., Schackert, G., et al. (2016). Restoration of ankle movements with the ActiGait implantable drop foot stimulator: A safe and reliable treatment option for permanent central leg palsy. Journal of Neurosurgery, 124(1), 70–76.

    Article  Google Scholar 

  • McCreery, D. B., Yuen, T. G., Agnew, W. F., & Bullara, L. A. (1997). A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes. IEEE Transactions on Biomedical Engineering, 44(10), 931–939.

    Article  Google Scholar 

  • McCreery, D. B., Yuen, T. G., & Bullara, L. A. (2000). Chronic microstimulation in the feline ventral cochlear nucleus: Physiologic and histologic effects. Hearing Research, 149(1–2), 223–238.

    Article  Google Scholar 

  • McCreery, D., Cogan, S., Kane, S., & Pikov, V. (2016). Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex. Journal of Neural Engineering, 13(3), 036012.

    Article  Google Scholar 

  • Mercanzini, A., Reddy, S. T., Velluto, D., Colin, P., Maillard, A., Bensadoun, J. C., et al. (2010). Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. Journal of Controlled Release, 145(3), 196–202.

    Article  Google Scholar 

  • Michelson, N. J., Vazquez, A. L., Eles, J. R., Salatino, J. W., Purcell, E. K., Williams, J. J., et al. (2018). Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: New emphasis on the biological interface. Journal of Neural Engineering., 15(3), 033001.

    Article  Google Scholar 

  • Miller, K. (Ed.). (2011). Biomechanics of the brain. New York: Springer.

    Google Scholar 

  • Mols, K., Musa, S., Nuttin, B., Lagae, L., & Bonin, V. (2017). In vivo characterization of the electrophysiological and astrocytic responses to a silicon neuroprobe implanted in the mouse neocortex. Scientific Reports [Internet], 7(1). [cited 2019 Apr 6]. Available from: http://www.nature.com/articles/s41598-017-15121-1.

  • Muckle, R. P., & Levine, S. C. (1994). Facial nerve stimulation produced by cochlear implants in patients with cochlear otosclerosis. The American Journal of Otology, 15(3), 394–398.

    Google Scholar 

  • Muranaka, H., Horiguchi, T., Ueda, Y., & Tanki, N. (2011). Evaluation of RF heating due to various implants during MR procedures. Magnetic Resonance in Medical Sciences, 10(1), 11–19.

    Article  Google Scholar 

  • Muthuswamy, J., Gilletti, A., Jain, T., & Okandan, M. (2003). Microactuated neural probes to compensate for brain micromotion. Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE [Internet], 1941–1943. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1279819.

  • Nagel, S. J., Wilson, S., Johnson, M. D., Machado, A., Frizon, L., Chardon, M. K., et al. (2017). Spinal cord stimulation for spasticity: Historical approaches, current status, and future directions. Neuromodulation.

    Google Scholar 

  • Ng, W. H., Donner, E., Go, C., Abou-Hamden, A., & Rutka, J. T. (2010). Revision of vagal nerve stimulation (VNS) electrodes: Review and report on use of ultra-sharp monopolar tip. Childs Nervous Systems, 26(8), 1081–1084.

    Article  Google Scholar 

  • Ng, F. L., Saxena, M., Mahfoud, F., Pathak, A., & Lobo, M. D. (2016). Device-based therapy for hypertension. Current Hypertension Reports [Internet], 18(8), 61. [cited 2017 Jul 6]. Available from: https://link.springer.com/article/10.1007/s11906-016-0670-5.

    Article  Google Scholar 

  • Nguyen, J. K., Park, D. J., Skousen, J. L., Hess-Dunning, A. E., Tyler, D. J., Rowan, S. J., et al. (2014). Mechanically-compliant intracortical implants reduce the neuroinflammatory response. Journal of Neural Engineering, 11(5), 056014–2560/11.

    Article  Google Scholar 

  • Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik, J. D., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 11041–11046.

    Article  Google Scholar 

  • Nizard, J., Raoul, S., Nguyen, J. P., & Lefaucheur, J. P. (2012). Invasive stimulation therapies for the treatment of refractory pain. Discovery Medicine, 14(77), 237–246.

    Google Scholar 

  • Nolta, N. F., Christensen, M. B., Crane, P. D., Skousen, J. L., & Tresco, P. A. (2015). BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials, 53, 753–762.

    Article  Google Scholar 

  • Normann, R. A., Maynard, E. M., Rousche, P. J., Nordhausen, C. T., Warren, D. J., & Guillory, K. S. (1997). The Utah 100 microelectrode array: An experimental platform for cortically based vision prosthesis. Investigative Ophthalmology & Visual Science, 38(4), S41.

    Google Scholar 

  • Ordonez, J. S., Boehler, C., Schuettler, M., & Stieglitz, T. (2012a). Improved polyimide thin-film electrodes for neural implants. Conference Proceeding: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012(0 (Coated Materials, Biocompatible);0 (Membranes, Artificial);0 (Resins, Synthetic);39355–34-5 (polyimide resin)), 5134–5137.

    Google Scholar 

  • Ordonez, J. S., Schuettler, M., Ortmanns, M., & Stieglitz, T. (2012b). A 232-channel retinal vision prosthesis with a miniaturized hermetic package. Conference Proceeding: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012(0 (Hermetic);0 (Zinc Oxide-Eugenol Cement)), 2796–2799.

    Google Scholar 

  • Ortiz-Catalan, M., Branemark, R., Hakansson, B., & Delbeke, J. (2012). On the viability of implantable electrodes for the natural control of artificial limbs: Review and discussion. Biomedical Engineering Online., 11(33), 1–30.

    Google Scholar 

  • Panic, V. V., Dekanski, A. B., Mitric, M., Milonjic, S. K., Miskovic-Stankovic, V. B., & Nikolic, B. Z. (2010). The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties. Physical Chemistry Chemical Physics, 12(27), 7521–7528.

    Article  Google Scholar 

  • Patterson, T., Stecker, M. M., & Netherton, B. L. (2007). Mechanisms of electrode induced injury. Part 2: Clinical experience. American Journal of Electroneurodiagnostic Technology, 47(2), 93–113.

    Article  Google Scholar 

  • Patton, V., Wiklendt, L., Arkwright, J. W., Lubowski, D. Z., & Dinning, P. G. (2013). The effect of sacral nerve stimulation on distal colonic motility in patients with faecal incontinence. The British Journal of Surgery, 100(7), 959–968.

    Article  Google Scholar 

  • Pavlov, V. A., & Tracey, K. J. (2015). Neural circuitry and immunity. Immunologic Research [Internet], 63(1–3), 38–57. [cited 2017 Jul 6]. Available from: https://link.springer.com/article/10.1007/s12026-015-8718-1.

    Article  Google Scholar 

  • Pearl, P. L., Conry, J. A., Yaun, A., Taylor, J. L., Heffron, A. M., Sigman, M., et al. (2008). Misidentification of vagus nerve stimulator for intravenous access and other major adverse events. Pediatric Neurology, 38(4), 248–251.

    Article  Google Scholar 

  • Pease, W. S., & Grove, S. L. (2013). Electrical safety in electrodiagnostic medicine. PM & R: The Journal of Injury, Function, and Rehabilitation, 5(5 Suppl), S8–S13.

    Article  Google Scholar 

  • Pečlin, P., Rozman, J., Krajnik, J., & Ribarič, S. (2016). Evaluation of the efficacy and robustness of a second generation implantable stimulator in a patient with hemiplegia during 20 years of functional electrical stimulation of the common peroneal nerve. Artificial Organs, 40(11), 1085–1091.

    Article  Google Scholar 

  • Peterson, D. K., Nochomovitz, M. L., Stellato, T. A., & Mortimer, J. T. (1994). Long-term intramuscular electrical activation of the phrenic nerve: Safety and reliability. IEEE Transactions on Biomedical Engineering, 41(12), 1115–1126.

    Article  Google Scholar 

  • Pierce, A. L., Sommakia, S., Rickus, J. L., & Otto, K. J. (2009). Thin-film silica sol-gel coatings for neural microelectrodes. Journal of Neuroscience Methods, 180(1), 106–110.

    Article  Google Scholar 

  • Polanco, M., Bawab, S., & Yoon, H. (2016). Computational assessment of neural probe and brain tissue interface under transient motion. Biosensors (Basel)., 6(2), 27.

    Article  Google Scholar 

  • Potter, K. A., Buck, A. C., Self, W. K., & Capadona, J. R. (2012). Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses. Journal of Neural Engineering, 9(4)(046020–2560/9):1–15.

    Google Scholar 

  • Potter, K. A., Buck, A. C., Self, W. K., Callanan, M. E., Sunil, S., & Capadona, J. R. (2013). The effect of resveratrol on neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials, 34(29), 7001–7015.

    Article  Google Scholar 

  • Prasad, A., Xue, Q.-S., Sankar, V., Nishida, T., Shaw, G., Streit, W. J., et al. (2012). Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants. Journal of Neural Engineering., 9(5), 056015.

    Article  Google Scholar 

  • Prasad, A., Xue, Q. S., Dieme, R., Sankar, V., Mayrand, R. C., Nishida, T., et al. (2014). Abiotic-biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Frontiers in Neuroengineering, 7(2), 1–15.

    Google Scholar 

  • Prodanov, D., & Delbeke, J. (2016). Mechanical and biological interactions of implants with the brain and their impact on implant design. Frontiers in Neuroscience, 10, 11.

    Article  Google Scholar 

  • Purcell, E. K., Thompson, D. E., Ludwig, K. A., & Kipke, D. R. (2009). Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality. Journal of Neuroscience Methods, 183(2), 149–157.

    Article  Google Scholar 

  • Quigley, D. G., Arnold, J., Eldridge, P. R., Cameron, H., McIvor, K., Miles, J. B., et al. (2003). Long-term outcome of spinal cord stimulation and hardware complications. Stereotactic and Functional Neurosurgery, 81(1–4), 50–56.

    Article  Google Scholar 

  • Ralston, A., Stevens, G., Mahomudally, E., Ibrahim, I., & Leckie, E. (1999). Cochlear implants: Response to therapeutic irradiation. International Journal of Radiation Oncology, Biology, Physics, 44(1), 227–231.

    Article  Google Scholar 

  • Rao, L., Zhou, H., Li, T., Li, C., & Duan, Y. Y. (2012). Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes. Acta Biomaterialia, 8(6), 2233–2242.

    Article  Google Scholar 

  • Rashid, B., Destrade, M., & Gilchrist, M. D. (2014). Mechanical characterization of brain tissue in tension at dynamic strain rates. Journal of the Mechanical Behavior of Biomedical Materials, 33, 43–54.

    Article  Google Scholar 

  • Renard, V. M., & North, R. B. (2006). Prevention of percutaneous electrode migration in spinal cord stimulation by a modification of the standard implantation technique. Journal of Neurosurgery. Spine, 4(4), 300–303.

    Article  Google Scholar 

  • Rennaker, R. L., Street, S., Ruyle, A. M., & Sloan, A. M. (2005). A comparison of chronic multi-channel cortical implantation techniques: Manual versus mechanical insertion. Journal of Neuroscience Methods, 142(2), 169–176.

    Article  Google Scholar 

  • Révész, D., Rydenhag, B., & Ben-Menachem, E. (2016). Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. Journal of Neurosurgery. Pediatrics, 18(1), 97–104.

    Article  Google Scholar 

  • Rickett, T., Connell, S., Bastijanic, J., Hegde, S., & Shi, R. (2010). Functional and mechanical evaluation of nerve stretch injury. Journal of Medical Systems, 6, 1–7.

    Google Scholar 

  • Roark, C., Whicher, S., & Abosch, A. (2008). Reversible neurological symptoms caused by diathermy in a patient with deep brain stimulators: Case report. Neurosurgery, 62(1), E256.

    Article  Google Scholar 

  • Rungta, R. L., Osmanski, B.-F., Boido, D., Tanter, M., & Charpak, S. (2017). Light controls cerebral blood flow in naive animals. Nature Communications, 8, 14191.

    Article  Google Scholar 

  • Rushton, D. N. (2002). Electrical stimulation in the treatment of pain. Disability and Rehabilitation, 24(8), 407–415.

    Article  Google Scholar 

  • Sankar, V., Sanchez, J. C., McCumiskey, E., Brown, N., Taylor, C. R., Ehlert, G. J., et al. (2013). A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants. Frontiers in Neurology, 4(124), 1–11.

    Google Scholar 

  • Saxena, T., Karumbaiah, L., Gaupp, E. A., Patkar, R., Patil, K., Betancur, M., et al. (2013). The impact of chronic blood-brain barrier breach on intracortical electrode function. Biomaterials, 34(20), 4703–4713.

    Article  Google Scholar 

  • Schalk, G. (2010). Can electrocorticography (ECoG) support robust and powerful brain-computer interfaces? Frontiers in Neuroengineering., 3(9), 1–2.

    Google Scholar 

  • Schendel, A. A., Thongpang, S., Brodnick, S. K., Richner, T. J., Lindevig, B. D. B., Krugner-Higby, L., et al. (2013). A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices. Journal of Neuroscience Methods, 218(1), 121–130.

    Article  Google Scholar 

  • Schiefer, M., Tan, D., Sidek, S. M., & Tyler, D. J. (2016). Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. Journal of Neural Engineering, 13(1), 016001.

    Article  Google Scholar 

  • Schwartz, A. B. (2004). Cortical neural prosthetics. Annual Review of Neuroscience, 27, 487–507.

    Article  Google Scholar 

  • Sharkey, P. C., Halter, J. A., & Nakajima, K. (1989). Electrophrenic respiration in patients with high quadriplegia. Neurosurgery, 24(4), 529–535.

    Article  Google Scholar 

  • Shih, C., Miller, J. L., Fialkow, M., Vicars, B. G., & Yang, C. C. (2013). Reoperation after sacral neuromodulation therapy: A single-institution experience. Female Pelvic Medicine & Reconstructive Surgery, 19(3), 175–178.

    Article  Google Scholar 

  • Shils, J. L., Mei, L. Z., & Arle, J. E. (2008). Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation. Stereotactic and Functional Neurosurgery, 86(1), 16–29.

    Article  Google Scholar 

  • Skousen, J. L., Merriam, S. M. E., Srivannavit, O., Perlin, G., Wise, K. D., & Tresco, P. A. (2011). Reducing surface area while maintaining implant penetrating profile lowers the brain foreign body response to chronically implanted planar silicon microelectrode arrays. Progress in Brain Research [Internet], 194, 167–180. Available from: https://doi.org/10.1016/B978-0-444-53815-4.00009-1.

  • Smyth, M. D., Tubbs, R. S., Bebin, E. M., Grabb, P. A., & Blount, J. P. (2003). Complications of chronic vagus nerve stimulation for epilepsy in children. Journal of Neurosurgery, 99(3), 500–503.

    Article  Google Scholar 

  • Sohal, H. S., Clowry, G. J., Jackson, A., O’Neill, A., & Baker, S. N. (2016). Mechanical flexibility reduces the foreign body response to long-term implanted microelectrodes in rabbit cortex. PLoS One, 11(10), e0165606.

    Article  Google Scholar 

  • Sonnenburg, R. E., Wackym, P. A., Yoganandan, N., Firszt, J. B., Prost, R. W., & Pintar, F. A. (2002). Biophysics of cochlear implant/MRI interactions emphasizing bone biomechanical properties. The Laryngoscope, 112(10), 1720–1725.

    Article  Google Scholar 

  • Sridharan, A., Rajan, S. D., & Muthuswamy, J. (2013). Long-term changes in the material properties of brain tissue at the implant-tissue interface. Journal of Neural Engineering, 10(6), 066001.

    Article  Google Scholar 

  • Staecker, H., Chow, H., & Nadol, J. B., Jr. (1999). Osteomyelitis, lateral sinus thrombosis, and temporal lobe infarction caused by infection of a percutaneous cochlear implant. The American Journal of Otology, 20(6), 726–728.

    Google Scholar 

  • Stieglitz, T. (2019). Why neurotechnologies? about the purposes, opportunities and limitations of neurotechnologies in clinical applications. Neuroethics [Internet], [cited 2019 Apr 18]. Available from: http://link.springer.com/10.1007/s12152-019-09406-7.

  • Stujenske, J. M., Spellman, T., & Gordon, J. A. (2015). Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Reports [Internet], 12(3), 525–534. [cited 2018 Oct 28]. Available from: http://www.sciencedirect.com/science/article/pii/S2211124715006488.

    Article  Google Scholar 

  • Suner, S., Fellows, M. R., Vargas-Irwin, C., Nakata, G. K., & Donoghue, J. P. (2005). Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(4), 524–541.

    Article  Google Scholar 

  • Tambyraja, R. R., Gutman, M. A., & Megerian, C. A. (2005). Cochlear implant complications: Utility of federal database in systematic analysis. Archives of Otolaryngology – Head & Neck Surgery, 131(3), 245–250.

    Article  Google Scholar 

  • Tatum, W. O., Ferreira, J. A., Benbadis, S. R., Heriaud, L. S., Gieron, M., Rodgers-Neame, N. T., et al. (2004). Vagus nerve stimulation for pharmacoresistant epilepsy: Clinical symptoms with end of service. Epilepsy & Behavior, 5(1), 128–132.

    Article  Google Scholar 

  • Taub, A. H., Hogri, R., Magal, A., Mintz, M., & Shacham-Diamand, Y. (2012). Bioactive anti-inflammatory coating for chronic neural electrodes. Journal of Biomedical Materials Research. Part A, 100(7), 1854–1858.

    Article  Google Scholar 

  • Terry, G. E., Conry, J. A., Taranto, E., & Yaun, A. (2011). Failure of a vagus nerve stimulator following a nearby lightning strike. Pediatric Neurosurgery, 47(1), 72–73.

    Article  Google Scholar 

  • Thelin, J., Jörntell, H., Psouni, E., Garwicz, M., Schouenborg, J., Danielsen, N., et al. (2011). Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One, 6(1), e16267.

    Article  Google Scholar 

  • Thoma, H., Girsch, W., Holle, J., & Mayr, W. (1989). Technology and long-term application of an epineural electrode. ASAIO Transactions, 35(3), 490–494.

    Article  Google Scholar 

  • Trout, A. T., Larson, D. B., Mangano, F. T., & Gonsalves, C. H. (2013). Twiddler syndrome with a twist: A cause of vagal nerve stimulator lead fracture. Pediatric Radiology, 43(12), 1647–1651.

    Article  Google Scholar 

  • Turner, J. N., Shain, W., Szarowski, D. H., Andersen, M., Martins, S., Isaacson, M., et al. (1999). Cerebral astrocyte response to micromachined silicon implants. Experimental Neurology, 156(1), 33–49.

    Article  Google Scholar 

  • Udo, E. O., Zuithoff, N. P. A., van Hemel, N. M., de Cock, C. C., Hendriks, T., Doevendans, P. A., et al. (2012). Incidence and predictors of short- and long-term complications in pacemaker therapy: The FOLLOWPACE study. Heart Rhythm, 9(5), 728–735.

    Article  Google Scholar 

  • Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74.

    Article  Google Scholar 

  • Val-Laillet, D., Aarts, E., Weber, B., Ferrari, M., Quaresima, V., Stoeckel, L. E., et al. (2015). Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clinical., 8, 1–31.

    Article  Google Scholar 

  • van Dommelen, J. A. W., Hrapko, M., & Peters, G. W. M. (2010). Constitutive modelling of brain tissue for prediction of traumatic brain injury. In L. E. Bilston (Ed.), Neural tissue biomechanics [Internet] (pp. 41–67). Berlin/Heidelberg: Springer Berlin Heidelberg. [cited 2019 Jan 1]. Available from: http://link.springer.com/10.1007/8415_2010_16.

    Chapter  Google Scholar 

  • Vasudevan, S., Patel, K., & Welle, C. (2016). Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes. Journal of Neural Engineering [Internet], 14(1), 016008. [cited 2017 Jul 3]. Available from: http://iopscience.iop.org/article/10.1088/1741-2552/14/1/016008/meta.

    Article  Google Scholar 

  • Ward, M. P., Rajdev, P., Ellison, C., & Irazoqui, P. P. (2009). Toward a comparison of microelectrodes for acute and chronic recordings. Brain Research, 1282, 183–200.

    Article  Google Scholar 

  • Waseem, H., Raffa, S. J., Benbadis, S. R., & Vale, F. L. (2014). Lead revision surgery for vagus nerve stimulation in epilepsy: Outcomes and efficacy. Epilepsy & Behavior, 31, 110–113.

    Article  Google Scholar 

  • Weaver, F. M., Stroupe, K. T., Smith, B., Gonzalez, B., Huo, Z., Cao, L., et al. (2017). Survival in patients with Parkinson’s disease after deep brain stimulation or medical management. Movement Disorders, 32(12), 1756–1763.

    Article  Google Scholar 

  • Weese, M., Silvestri, J. M., Kenny, A. S., Ilbawi, M. N., Hauptman, S. A., Lipton, J. W., et al. (1996). Diaphragm pacing with a quadripolar phrenic nerve electrode: An international study. Pacing and Clinical Electrophysiology, 19(9), 1311–1319.

    Article  Google Scholar 

  • Welkenhuysen, M., Andrei, A., Ameye, L., Eberle, W., & Nuttin, B. (2011). Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe. IEEE Transactions on Biomedical Engineering, 58(11), 3250–3259.

    Article  Google Scholar 

  • Welling, D. B., Hinojosa, R., Gantz, B. J., & Lee, J. T. (1993). Insertional trauma of multichannel cochlear implants. The Laryngoscope, 103(9), 995–1001.

    Article  Google Scholar 

  • Wellman, S. M., Eles, J. R., Ludwig, K. A., Seymour, J. P., Michelson, N. J., McFadden, W. E., et al. (2018). A materials roadmap to functional neural interface design. Advanced Functional Materials [Internet], 28(12), 1–38.[cited 2018 Oct 23]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201701269.

    Google Scholar 

  • Wellman, S. M., Li, L., Yaxiaer, Y., McNamara, I., & Kozai, T. D. Y. (2019). Revealing spatial and temporal patterns of cell death, glial proliferation, and blood-brain barrier dysfunction around implanted intracortical neural interfaces. Frontiers in Neuroscience, 13, 493.

    Article  Google Scholar 

  • Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29(20), 2941–2953.

    Article  Google Scholar 

  • Williams, J. C., Rennaker, R. L., & Kipke, D. R. (1999). Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Research. Brain Research Protocols, 4(3), 303–313.

    Article  Google Scholar 

  • Williams, N. R., Short, E. B., Hopkins, T., Bentzley, B. S., Sahlem, G. L., Pannu, J., et al. (2016). Five-year follow-up of bilateral epidural prefrontal cortical stimulation for treatment-resistant depression. Brain Stimulation [Internet], 9(6), 897–904. [cited 2016 Dec 1]. Available from: http://www.sciencedirect.com/science/article/pii/S1935861X16301917.

  • Winslow, B. D., Christensen, M. B., Yang, W. K., Solzbacher, F., & Tresco, P. A. (2010). A comparison of the tissue response to chronically implanted Parylene-C-coated and uncoated planar silicon microelectrode arrays in rat cortex. Biomaterials, 31(35), 9163–9172.

    Article  Google Scholar 

  • Winter, J. O., Gokhale, M., Jensen, R. J., Cogan, S. F., & Rizzo, J. F., III. (2008). Tissue engineering applied to the retinal prosthesis: Neurotrophin-eluting polymeric hydrogel coatings. Materials Science & Engineering, C: Materials for Biological Applications, 28(3), 448–453.

    Article  Google Scholar 

  • Wise, K. D., & Najafi, K. (1991). Microfabrication techniques for integrated sensors and microsystems. Science, 254(5036), 1335–1342.

    Article  Google Scholar 

  • Wong, C. H., Birkett, J., Byth, K., Dexter, M., Somerville, E., Gill, D., et al. (2009). Risk factors for complications during intracranial electrode recording in presurgical evaluation of drug resistant partial epilepsy. Acta Neurochirurgica, 151(1), 37–50.

    Article  Google Scholar 

  • Woolford, T. J., Saeed, S. R., Boyd, P., Hartley, C., & Ramsden, R. T. (1995). Cochlear reimplantation. Annals of Otology, Rhinology, and Laryngology Supplement, 166, 449–453.

    Google Scholar 

  • Wright, J., Macefield, V. G., van Schaik, A., & Tapson, J. C. (2016). A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience, 10(312), 1–13.

    Google Scholar 

  • Xie, Y., Martini, N., Hassler, C., Kirch, R. D., Stieglitz, T., Seifert, A., et al. (2014). In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography. Frontiers in Neuroengineering., 7(34), 1–10.

    Google Scholar 

  • Yoshida, K., Lewinsky, I., Nielsen, M., & Hylleberg, M. (2007). Implantation mechanics of tungsten microneedles into peripheral nerve trunks. Medical & Biological Engineering & Computing, 45(4), 413–420.

    Article  Google Scholar 

  • Zhong, Y., Yu, X., Gilbert, R., & Bellamkonda, R. V. (2001). Stabilizing electrode-host interfaces: A tissue engineering approach. Journal of Rehabilitation Research and Development, 38(6), 627–632.

    Google Scholar 

  • Zrunek, M., & Burian, K. (1985). Risk of basilar membrane perforation by intracochlear electrodes. Archives of Oto-Rhino-Laryngology, 242(3), 295–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter Prodanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delbeke, J., Haesler, S., Prodanov, D. (2020). Failure Modes of Implanted Neural Interfaces. In: Guo, L. (eds) Neural Interface Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-41854-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41854-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41853-3

  • Online ISBN: 978-3-030-41854-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics