Skip to main content

Electroencephalography

  • Chapter
  • First Online:
  • 1547 Accesses

Abstract

Recent advances in neuroscience and neural engineering have enabled researchers to better understand the neural mechanisms underlying complex human brain functions, which has led to a new recognition of the needs in clinical arenas. To this effect, electroencephalography (EEG) has been widely used due to several of its advantages, including noninvasiveness and cost-effectiveness. EEG provides information about electrical activities of neural functions collected typically with scalp electrodes. As EEG-based knowledge is expanding, EEG systems are being used in more sophisticated technologies including brain–computer interfaces (BCIs) and neuromodulation protocols. This type of noninvasive neuroimaging technique has growing applications in various fields including engineering, psychology and neuroscience, clinical and neurological domains, and neuromarketing. This chapter explains the fundamental principles of EEG signals and recording tools so that the reader can acquire the necessary knowledge about state-of-the-art EEG techniques and their corresponding challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amzica, F., & Steriade, M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalography and Clinical Neurophysiology, 107(2), 69–83.

    Article  Google Scholar 

  • Besio, G., Koka, K., Aakula, R., & Dai, W. (2006). Tri-polar concentric ring electrode development for Laplacian electroencephalography. IEEE Transactions on Biomedical Engineering, 53(5), 926–933.

    Article  Google Scholar 

  • Besio, W., Koka, K., & Cole, A. (2007). Feasibility of non-invasive transcutaneous electrical stimulation for modulating pilocarpine-induced status epilepticus seizures in rats. Epilepsia, 48(12), 2273–2279.

    Google Scholar 

  • Besio, W. G., Makeyev, O., Medvedev, A., & Gale, K. (2013a). Effects of transcranial focal electrical stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced seizures in rats. Epilepsy Research, 105(1–2), 42–51.

    Article  Google Scholar 

  • Besio, W., Cuellar-Herrera, M., Luna-Munguia, H., Orozco-Suárez, S., & Rocha, L. (2013b). Effects of transcranial focal electrical stimulation alone and associated with a sub-effective dose of diazepam on pilocarpine-induced status epilepticus and subsequent neuronal damage in rats. Epilepsy & Behavior, 28(3), 432–436.

    Article  Google Scholar 

  • Cao, H., Besio, W., Jones, S., & Medvedev, A. (2009, September). Improved separability of dipole sources by tripolar versus conventional disk electrodes: A modeling study using independent component analysis. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4023–4026). IEEE.

    Google Scholar 

  • Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763.

    Article  Google Scholar 

  • Daniel, R. S. (1967). Alpha and theta EEG in vigilance. Perceptual and Motor Skills, 25(3), 697–703.

    Article  Google Scholar 

  • Fitzgibbon, S. P., Pope, K. J., Mackenzie, L., Clark, C. R., & Willoughby, J. O. (2004). Cognitive tasks augment gamma EEG power. Clinical Neurophysiology, 115(8), 1802–1809.

    Google Scholar 

  • Gargiulo, G., Calvo, R. A., Bifulco, P., Cesarelli, M., Jin, C., Mohamed, A., & van Schaik, A. (2010). A new EEG recording system for passive dry electrodes. Clinical Neurophysiology, 121(5), 686–693.

    Article  Google Scholar 

  • Gotlib, I. H. (1998). EEG alpha asymmetry, depression, and cognitive functioning. Cognition & Emotion, 12(3), 449–478.

    Article  Google Scholar 

  • Haas, L. F. (2003). Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. Journal of Neurology, Neurosurgery & Psychiatry, 74(1), 9–9.

    Article  Google Scholar 

  • Heinrichs-Graham, E., Kurz, M. J., Becker, K. M., Santamaria, P. M., Gendelman, H. E., & Wilson, T. W. (2014). Hypersynchrony despite pathologically reduced beta oscillations in patients with Parkinson’s disease: A pharmaco-magnetoencephalography study. Journal of Neurophysiology, 112(7), 1739–1747.

    Article  Google Scholar 

  • Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526–530.

    Article  Google Scholar 

  • Kamiński, J., Brzezicka, A., Gola, M., & Wróbel, A. (2012). Beta band oscillations engagement in human alertness process. International Journal of Psychophysiology, 85(1), 125–128.

    Article  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.). (2000). Principles of neural science (Vol. 4, pp. 1227–1246). New York: McGraw-hill.

    Google Scholar 

  • Käthner, I., Wriessnegger, S. C., Müller-Putz, G. R., Kübler, A., & Halder, S. (2014). Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain–computer interface. Biological Psychology, 102, 118–129.

    Article  Google Scholar 

  • Kirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H., Emre, M., & Demiralp, T. (2006). Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Research, 1104(1), 114–128.

    Article  Google Scholar 

  • Korotchikova, I., Connolly, S., Ryan, C. A., Murray, D. M., Temko, A., Greene, B. R., & Boylan, G. B. (2009). EEG in the healthy term newborn within 12 hours of birth. Clinical Neurophysiology, 120(6), 1046–1053.

    Article  Google Scholar 

  • Kwon, J. S., O’donnell, B. F., Wallenstein, G. V., Greene, R. W., Hirayasu, Y., Nestor, P. G., Hasselmo, M. E., Potts, G. F., Shenton, M. E., & McCarley, R. W. (1999). Gamma frequency–range abnormalities to auditory stimulation in schizophrenia. Archives of General Psychiatry, 56(11), 1001–1005.

    Article  Google Scholar 

  • Lopez-Gordo, M., Sanchez-Morillo, D., & Valle, F. (2014). Dry EEG electrodes. Sensors, 14(7), 12847–12870.

    Article  Google Scholar 

  • MacKay, W. A. (1997). Synchronized neuronal oscillations and their role in motor processes. Trends in Cognitive Sciences, 1(5), 176–183.

    Article  Google Scholar 

  • McFarland, D. J., McCane, L. M., David, S. V., & Wolpaw, J. R. (1997). Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology, 103(3), 386–394.

    Article  Google Scholar 

  • Nunez, P. L. (2000). Toward a quantitative description of large-scale neocortical dynamic function and EEG. Behavioral and Brain Sciences, 23(3), 371–398.

    Article  Google Scholar 

  • Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. USA: Oxford University Press.

    Book  Google Scholar 

  • Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719.

    Article  Google Scholar 

  • Pfurtscheller, G., Neuper, C., Flotzinger, D., & Pregenzer, M. (1997). EEG-based discrimination between imagination of right and left hand movement. Electroencephalography and Clinical Neurophysiology, 103(6), 642–651.

    Article  Google Scholar 

  • Roche, R. A., Dockree, P. M., Garavan, H., Foxe, J. J., Robertson, I. H., & O’Mara, S. M. (2004). EEG alpha power changes reflect response inhibition deficits after traumatic brain injury (TBI) in humans. Neuroscience Letters, 362(1), 1–5.

    Article  Google Scholar 

  • Tallon-Baudry, C. (2009). The roles of gamma-band oscillatory synchrony in human visual cognition. Frontiers in Bioscience, 14, 321–332.

    Article  Google Scholar 

  • van Driel, J., Ridderinkhof, K. R., & Cohen, M. X. (2012). Not all errors are alike: Theta and alpha EEG dynamics relate to differences in error-processing dynamics. Journal of Neuroscience, 32(47), 16795–16806.

    Article  Google Scholar 

  • Weinberger, M., Mahant, N., Hutchison, W. D., Lozano, A. M., Moro, E., Hodaie, M., Lang, A. E., & Dostrovsky, J. O. (2006). Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. Journal of Neurophysiology, 96(6), 3248–3256.

    Article  Google Scholar 

  • Wolpaw, J., & Wolpaw, E. W. (Eds.). (2012). Brain-computer interfaces: Principles and practice. OUP USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalda Shahriari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahriari, Y. et al. (2020). Electroencephalography. In: Guo, L. (eds) Neural Interface Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-41854-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41854-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41853-3

  • Online ISBN: 978-3-030-41854-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics