Skip to main content

Cardiomyopathies

  • Chapter
  • First Online:
Cardiac Magnetic Resonance Atlas

Abstract

In the field of cardiomyopathies the use of CMR has become part of routine assessment not only for diagnostic and clinical purposes but also for pathophysiologic studies. In fact, CMR has the exclusive possibility to noninvasively characterize myocardial tissue, i.e., to detect the presence of myocardial fibrosis and the presence of infiltrative phenomena. Even microstructural abnormalities, such as the interstitial volume, can be easily assessed by CMR adding a new perspective in the comprehension of tissue changes occurring in the single pathology and even more in the single patient. Furthermore, the use of CMR-based quantitative/semiquantitative parameters to follow up patients eventually treated by specific therapy is starting to be routinely proposed to optimize the timing and the dosage of specific therapy. In this chapter the most common cardiomyopathies are illustrated, trying to show the most relevant abnormalities and tissue changes which are assessable by CMR. Details on the CMR protocol to be adopted in the single pathology are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Maron MS, Maron BJ. Clinical impact of contemporary cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Circulation. 2015;132(4):292–8.

    Article  Google Scholar 

  2. Chan C, Maron MS. Hypertrophic cardiomyopathy. The EACVI textbook of cardiovascular magnetic resonance: Oxford University Press; 2018.

    Google Scholar 

  3. Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, Camici PG. The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(9):866–75.

    Article  Google Scholar 

  4. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89.

    Google Scholar 

  5. Gulati A, Ismail TF, Prasad SK. Fibrosis and mortality in patients with dilated cardiomyopathy—reply. JAMA. 2013;309(24):2548–9.

    Article  CAS  Google Scholar 

  6. Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, Morarji K, Brown TD, Ismail NA, Dweck MR, Di Pietro E, Roughton M, Wage R, Daryani Y, O’Hanlon R, Sheppard MN, Alpendurada F, Lyon AR, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK. Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA. 2013;309(9):896–908.

    Article  CAS  Google Scholar 

  7. Dweck MR, Joshi S, Murigu T, Alpendurada F, Jabbour A, Melina G, Banya W, Gulati A, Roussin I, Raza S, Prasad NA, Wage R, Quarto C, Angeloni E, Refice S, Sheppard M, Cook SA, Kilner PJ, Pennell DJ, Newby DE, Mohiaddin RH, Pepper J, Prasad SK. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol. 2011;58(12):1271–9.

    Article  Google Scholar 

  8. Lombardi M, Plein S, Petersen S, Bucciarelli-Ducci C, Valsangiacomo-Buechel M, Basso C, Ferrari V. The EACVI Textbook of Cardiovascular Magnetic Resonance. Oxford; Oxford University Press; 2018.

    Google Scholar 

  9. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, Watkins H, Neubauer S. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):101–5.

    Article  Google Scholar 

  10. Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JY, Vidal V, Bartoli JM, Habib G, Moulin G. Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J. 2010;31(9):1098–104.

    Article  Google Scholar 

  11. Aquaro GD, Pingitore A, Strata E, Di Bella G, Molinaro S, Lombardi M. Cardiac magnetic resonance predicts outcome in patients with premature ventricular complexes of left bundle branch block morphology. J Am Coll Cardiol. 2010;56(15):1235–43.

    Article  Google Scholar 

  12. Marra MP, Leoni L, Bauce B, Corbetti F, Zorzi A, Migliore F, Silvano M, Rigato I, Tona F, Tarantini G, Cacciavillani L, Basso C, Buja G, Thiene G, Iliceto S, Corrado D. Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltage mapping and contrast-enhanced cardiac magnetic resonance. Circ Arrhythm Electrophysiol. 2012;5(1):91–100.

    Article  Google Scholar 

  13. Rastegar N, Zimmerman SL, Te Riele ASJM, James C, Burt JR, Bhonsale A, Murray B, Tichnell C, Judge D, Calkins H, Tandri H, Bluemke DA, Kamel IR. Spectrum of Biventricular Involvement on CMR Among Carriers of ARVD/C-Associated Mutations. JACC Cardiovasc Imaging. 2015;8(7):863–4.

    Article  Google Scholar 

  14. Saguner AM, Buchmann B, Wyler D, Manka R, Gotschy A, Medeiros-Domingo A, Brunckhorst C, Duru F, Mayer KA. Arrhythmogenic left ventricular cardiomyopathy suspected by cardiac magnetic resonance imaging, confirmed by identification of a novel plakophilin-2 variant. Circulation. 2015;132:e38–40.

    Article  Google Scholar 

  15. Bennett RG, Haqqani HM, Berruezo A, Della Bella P, Marchlinski FE, Hsu CJ, Kumar S. Arrhythmogenic Cardiomyopathy in 2018-2019: ARVC/ALVC or Both? Heart Lung Circ. 2019;28(1):164–77.

    Article  Google Scholar 

  16. Weidemann F, Rummey C, Bijnens B, Störk S, Jasaityte R, Dhooge J, Baltabaeva A, Sutherland G, Schulz JB, Meier T. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation. 2012;125(13):1626–34.

    Article  Google Scholar 

  17. Meyer C, Schmid G, Görlitz S, Ernst M, Wilkens C, Wilhelms I, Kraus PH, Bauer P, Tomiuk J, Przuntek H, Mügge A, Schöls L. Cardiomyopathy in Friedreich’s ataxia-assessment by cardiac MRI. Mov Disord. 2007;22(11):1615–22.

    Article  Google Scholar 

  18. Schmacht L, Traber J, Grieben U, Utz W, Dieringer MA, Kellman P, Blaszczyk E, von Knobelsdorff-Brenkenhoff F, Spuler S, Schulz-Menger J. Cardiac involvement in myotonic dystrophy type 2 patients with preserved ejection fraction: detection by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2016;9(7).

    Google Scholar 

  19. Turkbey EB, Gai N, Lima JA, van der Geest RJ, Wagner KR, Tomaselli GF, Bluemke DA, Nazarian S. Assessment of cardiac involvement in myotonic muscular dystrophy by T1 mapping on magnetic resonance imaging. Heart Rhythm. 2012;9(10):1691–7.

    Article  Google Scholar 

  20. Verhaert D, Richards K, Rafael-Fortney JA, Raman SV. Cardiac involvement in patients with muscular dystrophies magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging. 2011;4:67–76.

    Article  Google Scholar 

  21. Camporeale A, Pieroni M, Pieruzzi F, Lusardi P, Pica S, Spada M, Mignani R, Burlina A, Bandera F, Guazzi M, Graziani F, Crea F, Greiser A, Boveri S, Ambrogi F, Lombardi M. Predictors of clinical evolution in prehypertrophic Fabry disease. Circ Cardiovasc Imaging. 2019;12(4):e008424.

    Article  Google Scholar 

  22. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, Maestrini V, Barcella W, Rosmini S, Bulluck H, Sayed RH, Patel K, Mamhood S, Bucciarelli-Ducci C, Whelan CJ, Herrey AS, Lachmann HJ, Wechalekar AD, Manisty CH, Schelbert EB, Kellman P, Gillmore JD, Hawkins PN, Moon JC. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132(16):1570–9.

    Article  CAS  Google Scholar 

  23. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, Pica S, Castelletti S, Piechnik SK, Robson MD, Gilbertson JA, Rowczenio D, Hutt DF, Lachmann HJ, Wechalekar AD, Whelan CJ, Gillmore JD, Hawkins PN, Moon JC. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):157–65.

    Article  Google Scholar 

  24. Meloni A, Positano V, Ruffo GB, Spasiano A, D’Ascola D, Peluso A, Petra K, Gennaro R, Valeri G, Renne S, Midiri M, Pepe A. Improvement of heart iron with preserved patterns of iron store by CMR-guided chelation therapy. Eur Heart J Cardiovasc Imaging. 2015;16(3):325–34.

    Article  Google Scholar 

  25. Pepe A, Meloni A, Rossi G, Midiri M, Missere M, Valeri G, Sorrentino F, D’Ascola DG, Spasiano A, Filosa A, Cuccia L, Dello Iacono N, Forni G, Caruso V, Maggio A, Pitrolo L, Peluso A, De Marchi D, Positano V, Wood JC. Prediction of cardiac complications for thalassemia major in the widespread cardiac magnetic resonance era: a prospective multicentre study by a multi-parametric approach. Eur Heart J Cardiovasc Imaging. 2018;19(3):299–309.

    Article  Google Scholar 

  26. Pepe A, Positano V, Santarelli MF, Sorrentino F, Cracolici E, De Marchi D, Maggio A, Midiri M, Landini L, Lombardi M. Multislice multiecho T2∗ Cardiovascular Magnetic Resonance for detection of the heterogeneous distribution of myocardial iron overload. J Magn Reson Imaging. 2006;23:662–8.

    Article  Google Scholar 

  27. D’Ascenzi F, Anselmi F, Piu P, Fiorentini C, Carbone SF, Volterrani L, Focardi M, Bonifazi M, Mondillo S. Cardiac magnetic resonance normal reference values of biventricular size and function in male athlete’s heart. JACC Cardiovasc Imaging. 2018.

    Google Scholar 

  28. Petersen SE, Selvanayagam JB, Francis JM, Myerson SG, Wiesmann F, Robson MD, Ostman-Smith I, Casadei B, Watkins H, Neubauer S. Differentiation of athlete’s heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2005;7(3):551–8.

    Article  Google Scholar 

  29. EACVI textbook of cardiovascular magnetic resonance. Oxford University Press; 2018.

    Google Scholar 

  30. Karam R, Lever HM. Healy BP. Hypertensive hypertrophic cardiomyopathy or hypertrophic cardiomyopathy with hypertension? A study of 78 patients. J Am Coll Cardiol. 1989;13(3):580–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

1.1 Electronic Supplementary Material

SSFP cine images in short axis of the left ventricle. Evidence of anteroseptal severe hypertrophy (AVI 79055 kb)

SSFP cine images in horizontal axis of the left ventricle. Evidence of anteroseptal severe hypertrophy. During the systolic phase evidence of abnormal movement of the anterior leaflet of mitral valve which is bulging toward the atrial cavity (AVI 79055 kb)

SSFP cine images in vertical long axis of the left ventricle. Evidence of severe anteroseptal hypertrophy (AVI 117614 kb)

SSFP cine images in short-axis view. Evidence of anterior hypertrophy (AVI 6243 kb)

SSFP cine images in horizontal long axis. Evidence of hypertrophy involving the apical segments (AVI 117614 kb)

SSFP cine images in vertical long axis. Evidence of hypertrophy involving the anterior midventricular and apical and the inferior apical segments (AVI 117614 kb)

Perfusion images. First-pass technique. Three parallel slices in proximal, mid-, and apical positions (left to right). Upper panels: images obtained at maximum pharmacological vasodilatation during adenosine infusion (140 μg/kg/min∗6 min). Lower panels: same planes in baseline conditions. During stress evidence of anterior midventricular hypoperfusion and apical diffuse hypoperfusion (AVI 45050 kb)

SSFP cine images in horizontal long-axis plane. Evidence of hypertrophy involving the septal segments (AVI 946 kb)

SSFP cine images in short-axis view. Evidence of septal hypertrophy (AVI 1022 kb)

SSFP cine images in vertical long-axis plane. Evidence of hypertrophy involving the anterior segments (AVI 1056 kb)

SSFP cine images. Horizontal long axis. Severe impairment of left ventricle global function (AVI 117614 kb)

SSFP cine images horizontal long-axis view. Evidence of biventricular dilatation and severe impairment of global function (AVI 8758 kb)

SSFP cine images vertical long-axis view. Evidence of ventricular dilatation and severe impairment of global function (AVI 7582 kb)

SSFP cine images in horizontal long axis. Evidence of a large artifact due to the presence of the umbrella previously positioned for closure of the atrial septal defect. Evidence of flow turbulence around the device. Evidence of hypertrabeculation at the level of the apical part of the interventricular septum. With a noncompacted/compacted myocardium ratio of 4 (n.v. < 2.3) and a percentage of 24% with respect to the global mass of the left ventricle (AVI 79055 kb)

SSFP cine images in three chambers view. Evidence of hypertrabeculation in correspondence of the apical segments with a noncompacted/compacted myocardium ratio of 4 (n.v. < 2.3) and a percentage of 24% with respect to the global mass of the left ventricle (AVI 79055 kb)

SSFP cine images in three chamber view. Abnormal representation of intraventricular trabeculation and a slight depression of global function (AVI 117614 kb)

SSFP cine images in horizontal long axis. Abnormal representation of intraventricular trabeculation both inside the left and the right ventricle (AVI 6353 kb)

SSFP cine images in horizontal long-axis plane. Evidence of multiple pseudo-aneurism at the level of right-ventricle free wall (AVI 8490 kb)

SSFP cine images in horizontal long-axis plane (parallel to the plane of Movie 1.18). Evidence of multiple pseudo-aneurism at the level of right-ventricle free wall (AVI 117614 kb)

SSFP cine sequence in horizontal long axis. Presence of an abnormal functional pattern at the level of the interventricular septum in its apical segment. The myocardium at this level shows an abnormal thinning (AVI 117614 kb)

SSFP cine sequence in axial view to image perpendicularly the right ventricular free wall with evidence of segmental asynchronous contraction (AVI 117614 kb)

SSFP cine sequence in axial view (more caudal with respect to Movie 1.21) to image perpendicularly the right ventricular free wall with evidence of segmental asynchronous contraction (AVI 117614 kb)

SSFP cine images in horizontal long axis. Normal regional and global function. Evidence of signal inhomogeneity at the level of the proximal interventricular septum due to the presence of fatty infiltration (chemical shift) (AVI 745 kb)

SSFP cine images in horizontal long-axis plane. Evidence of a large dysplastic diverticulum at apical level of the left ventricle whose inner cavity is in large communication with the main left ventricle cavity. Evidence of metallic artifact at the level of the interatrial septum due to the presence of the umbrella device (AVI 770 kb)

SSFP cine images in horizontal long-axis plane. More caudal with respect to Movie 1.24. Evidence of a large dysplastic diverticulum at the apical level of the left ventricle which inner cavity is in large communication with the main left-ventricle cavity. Evidence of metallic artifact at the level of the interatrial septum due to the presence of the umbrella device (AVI 706 kb)

SSFP cine images in three-chamber view. Evidence of a large dysplastic diverticulum at the apical level of the left ventricle which inner cavity is in communication with the main left-ventricle cavity (AVI 25625 kb)

Stack of SSFP cine images in short-axis view of the left ventricle. Evidence of moderate impairment of global function due to diffuse hypokinesia (AVI 6104 kb)

SSFP cine images in horizontal long axis. Evidence of normal regional and global function (AVI 6187 kb)

SSFP cine images in vertical long-axis plane. Evidence of segmental hypertrophy and preserved global function (AVI 6018 kb)

SSFP cine images in horizontal long-axis plane. Evidence of segmental hypertrophy and preserved global function (AVI 6317 kb)

SSFP cine images in midventricular short-axis plane. Evidence of segmental hypertrophy and preserved global function (AVI 5283 kb)

SSFP cine images in short-axis view of the left ventricle. Evidence of asymmetric hypertrophy involving the interventricular septum (AVI 6243 kb)

SSFP cine images in horizontal long-axis view of the left ventricle. Evidence of asymmetric hypertrophy involving the interventricular septum (AVI 6243 kb)

SSFP cine images three chambers view of the left ventricle. Evidence of asymmetric hypertrophy involving the interventricular septum (AVI 6243 kb)

SSFP cine images in horizontal long-axis view of the left ventricle. Normal regional and global function (AVI 6026 kb)

SSFP cine images in vertical long-axis plane. Evidence global functional impairment, diffuse hypokinesia, and myocardial hypertrophy. Left atrial enlargement (AVI 6052 kb)

SSFP cine images in horizontal long-axis view. Evidence of diffuse myocardial hypertrophy (AVI 9068 kb)

SSFP cine images in three-chamber view. Evidence of diffuse myocardial hypertrophy, more evident at the level of the interventricular septum. Evidence of turbulent flow at the level of the outflow tract (AVI 9044 kb)

SSFP cine images in short-axis view. Evidence of diffuse myocardial hypertrophy, more evident at the level of the interventricular septum (AVI 9587 kb)

Stack of SPSS cine images in short axis of the heart obtained before optimizing the chelation therapy based on CMR findings, evidencing a mild reduction of LV global function considering the higher normal cut values in anemic population (EF 50%) (AVI 60840 kb)

Stack of SPSS cine images in short axis of the heart obtained after the optimization of chelation therapy based on CMR findings, evidencing a fully normal LV global function (EF 68%) (AVI 26010 kb)

SSFP cine images in horizontal long-axis plane. Images obtained at baseline (AVI 898 kb)

SSFP cine images in horizontal long-axis plane. Images obtained 6 months after complete stop of sport activity (AVI 905 kb)

SSFP cine images in short-axis view of the heart. Images obtained at baseline (AVI 1073 kb)

SSFP cine images in short-axis view of the heart. Images obtained 6 months after complete stop of sport activity (AVI 808 kb)

SSFP cine sequence. Horizontal long axis. Evidence of light myocardial hypertrophy at the level of proximal septal segment (AVI 117614 kb)

SSFP cine sequence in short-axis view. Evidence of myocardial hypertrophy at the level of septal segments (AVI 117614 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rustamova, Y., Lombardi, M. (2020). Cardiomyopathies. In: Cardiac Magnetic Resonance Atlas. Springer, Cham. https://doi.org/10.1007/978-3-030-41830-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41830-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41829-8

  • Online ISBN: 978-3-030-41830-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics