Redirected Walking in VR

Part of the Lecture Notes in Computer Science book series (LNCS, volume 11900)


Virtual Reality (VR) content creators usually design large virtual environments. However, the available physical spaces are typically limited and contain several interior obstacles such as furniture, cables or computers. Thus, users may experience discontinuity or even dangers while naturally walking in VR.

Redirected walking (RDW) approaches consist of a series of VR-based locomotion techniques, which introduce perceptually unnoticeable virtual camera motion offset from a user’s movements. In this chapter we summarize the state-of-art RDW techniques on how to more significantly redirect users towards infinite walking while avoiding both static and dynamic dangers.


Perception Virtual reality 


  1. 1.
    Azmandian, M., Grechkin, T., Rosenberg, E.S.: An evaluation of strategies for two-user redirected walking in shared physical spaces. In: 2017 IEEE Virtual Reality (VR), pp. 91–98 (March 2017).
  2. 2.
    Bahill, A.T., Clark, M.R., Stark, L.: The main sequence, a tool for studying human eye movements. Math. Biosci. 24(3–4), 191–204 (1975). Scholar
  3. 3.
    Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & #38; teleport locomotion technique for virtual reality. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY 2016, pp. 205–216. ACM, New York (2016).
  4. 4.
    Dong, Z.C., Fu, X.M., Yang, Z., Liu, L.: Redirected smooth mappings for multiuser real walking in virtual reality. ACM Trans. Graph. 38(5), 149:1–149:17 (2019). Scholar
  5. 5.
    Dong, Z.C., Fu, X.M., Zhang, C., Wu, K., Liu, L.: Smooth assembled mappings for large-scale real walking. ACM Trans. Graph. 36(6), 211:1–211:13 (2017). Scholar
  6. 6.
    Grechkin, T., Thomas, J., Azmandian, M., Bolas, M., Suma, E.: Revisiting detection thresholds for redirected walking: combining translation and curvature gains. In: Proceedings of the ACM Symposium on Applied Perception, SAP 2016, pp. 113–120. ACM, New York (2016).
  7. 7.
    Interrante, V., O’Rourke, E., Gray, L., Anderson, L., Ries, B.: A quantitative assessment of the impact on spatial understanding of exploring a complex immersive virtual environment using augmented real walking versus flying. In: Proceedings of the 13th Eurographics Symposium on Virtual Environments (2007). entered As Is, not found here.
  8. 8.
    Langbehn, E., Bruder, G., Steinicke, F.: Subliminal reorientation and repositioning in virtual reality during eye blinks. In: Proceedings of Spatial User Interaction, pp. 213–213 (2016).
  9. 9.
    Langbehn, E., Steinicke, F., Lappe, M., Welch, G.F., Bruder, G.: In the blink of an eye: leveraging blink-induced suppression for imperceptible position and orientation redirection in virtual reality. ACM Trans. Graph. 37(4), 1–11 (2018)CrossRefGoogle Scholar
  10. 10.
    Lee, D., Cho, Y., Lee, I.: Real-time optimal planning for redirected walking using deep q-learning. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 63–71 (March 2019).
  11. 11.
    Nilsson, N.C., et al.: 15 years of research on redirected walking in immersive virtual environments. IEEE Comput. Graph. Appl. 38(2), 44–56 (2018)CrossRefGoogle Scholar
  12. 12.
    Peck, T.C., Whitton, M.C., Fuchs, H.: Evaluation of reorientation techniques for walking in large virtual environments. In: 2008 IEEE Virtual Reality Conference, pp. 121–127 (March 2008).
  13. 13.
    Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Proceedings of Eurographics, vol. 9, pp. 105–106, Manchester (2001)Google Scholar
  14. 14.
    Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: EGVE 2002, pp. 123–130 (2002).
  15. 15.
    Ridder III, W.H., Tomlinson, A.: A comparison of saccadic and blink suppression in normal observers. Vis. Res. 37(22), 3171–3179 (1997). Scholar
  16. 16.
    Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Analyses of human sensitivity to redirected walking. In: Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology, VRST 2008, pp. 149–156. ACM, New York (2008).
  17. 17.
    Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE TVCG 16(1), 17–27 (2010). Scholar
  18. 18.
    Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments. In: 2012 IEEE Virtual Reality Workshops (VRW), pp. 43–46 (March 2012).
  19. 19.
    Suma, E.A., Krum, D., Bolas, M.: Redirected walking in mixed reality training applications. In: Human Walking in Virtual Environments: Perception, Technology, and Applications, pp. 319–331. Springer, New York (2013).
  20. 20.
    Suma, E.A., Lipps, Z., Finkelstein, S., Krum, D.M., Bolas, M.: Impossible spaces: maximizing natural walking in virtual environments with self-overlapping architecture. IEEE Trans. Visual. Comput. Graph. 18(4), 555–564 (2012). Scholar
  21. 21.
    Sun, Q., et al.: Towards virtual reality infinite walking: dynamic saccadic redirection. ACM Trans. Graph. 34(4), 16 (2018). sIGGRAPH 2018Google Scholar
  22. 22.
    Sun, Q., Wei, L.Y., Kaufman, A.: Mapping virtual and physical reality. ACM Trans. Graph. 35(4), 64:1–64:12 (2016). Scholar
  23. 23.
    Usoh, M., et al.: Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: SIGGRAPH 1999, pp. 359–364 (1999).
  24. 24.
    Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: dynamic layout generation for infinite walking in virtual environments. In: 2013 IEEE Symposium on 3D User Interfaces (3DUI), pp. 39–42 (March 2013).
  25. 25.
    Williams, B., et al.: Exploring large virtual environments with an HMD when physical space is limited. In: Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization, APGV 2007, pp. 41–48. ACM, New York (2007).
  26. 26.
    Ziat, M., Hayward, V., Chapman, C.E., Ernst, M.O., Lenay, C.: Tactile suppression of displacement. Exp. Brain Res. 206(3), 299–310 (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AdobeSan JoséUSA
  2. 2.Facebook Reality LabsRedmondUSA
  3. 3.University of HamburgHamburgGermany

Personalised recommendations