Skip to main content

Resource Demand Estimation

  • Chapter
  • 1199 Accesses

Abstract

In this chapter, we survey, systematize, and evaluate different approaches to the statistical estimation of resource demands based on easy-to-measure system-level and application-level metrics. We consider resource demands in the context of computing systems; however, the methods we present are also applicable to other types of systems. We focus on generic methods to approximate resource demands without relying on dedicated instrumentation of the application.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard, Y., & Shatzoff, M. (1978). Statistical methods in computer performance analysis. In K. M. Chandy & R. T.-Y. Yeh (Eds.), Current trends in programming methodology vol. III: Software modeling (pp. 1–51). New Jersey, Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. Wiley Series in Probability and Statistics (5th ed., cited on p. 336). Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Brosig, F., Kounev, S., & Krogmann, K. (2009). Automated extraction of Palladio component models from running enterprise Java applications. In Proceedings of the Fourth International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS 2009)—ROSSA 2009 Workshop, Pisa. Brussels/New York, NY: ICST/ACM.

    Google Scholar 

  • Casale, G., Cremonesi, P., & Turrin, R. (2007). How to select significant workloads in performance models. In Proceedings of the 33rd International Computer Measurement Group Conference (CMG 2007), San Diego, CA.

    Google Scholar 

  • Casale, G., Cremonesi, P., & Turrin, R. (2008). Robust workload estimation in queueing network performance models. In Proceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP 2008), Toulouse (pp. 183–187). Piscataway, New Jersey: IEEE.

    Google Scholar 

  • Chatterjee, S.,& Price, B. (1995). Praxis der regressionsanalyse (2nd ed.). Munich: Oldenbourg Wissenschaftsverlag

    Google Scholar 

  • Cremonesi, P., Dhyani, K., & Sansottera, A. (2010). Service time estimation with a refinement enhanced hybrid clustering algorithm. In K. Al-Begain, D. Fiems & W. J. Knottenbelt (Eds.), ASMTA 2010—Proceedings of the 17th International Conference on Analytical and Stochastic Modeling Techniques and Applications, Cardiff. Lecture Notes in Computer Science (Vol. 6148, pp. 291–305). Berlin: Springer.

    Google Scholar 

  • Cremonesi, P., & Sansottera, A. (2012). Indirect estimation of service demands in the presence of structural changes. In Proceedings of the 2012 Ninth International Conference on Quantitative Evaluation of Systems (QEST 2012) (pp. 249–259). Washington, DC: IEEE Computer Society.

    CrossRef  Google Scholar 

  • Cremonesi, P., & Sansottera, A. (2014). Indirect estimation of service demands in the presence of structural changes. In Performance evaluation (Vol. 73, pp. 18–40). Amsterdam: Elsevier Science.

    Google Scholar 

  • Kalbasi, A., Krishnamurthy, D., Rolia, J., & Dawson, S. (2012). DEC: Service demand estimation with confidence. IEEE Transactions on Software Engineering, 38(3), 561–578.

    CrossRef  Google Scholar 

  • Kalbasi, A., Krishnamurthy, D., Rolia, J., & Richter, M. (2011). MODE: Mix Driven on-line resource demand estimation. In Proceedings of the 7th International Conference on Network and Service Management (CNSM 2011), Paris. Piscataway, New Jersey: IEEE.

    Google Scholar 

  • Kraft, S., Pacheco-Sanchez, S., Casale, G., & Dawson, S. (2009). Estimating service resource consumption from response time measurements. In Proceedings of the 4th International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS 2009), Pisa (p. 48). Brussels/New York, NY: ICST/ACM.

    Google Scholar 

  • Kumar, D., Tantawi, A. N., & Zhang, L. (2009). Real-time performance modeling for adaptive software systems with multi-class workload. In Proceedings of the 17th Annual Meeting of the IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2009), London (pp. 1–4). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Kumar, D., Zhang, L., & Tantawi, A. N. (2009). Enhanced inferencing: Estimation of a workload dependent performance model. In Proceedings of the 4th International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS 2009), Pisa. Brussels/New York, NY: ICST/ACM.

    Google Scholar 

  • Lazowska, E. D., Zahorjan, J., Graham, G. S., & Sevcik, K. C. (1984). Quantitative system performance: Computer system analysis using queueing network models. Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Liu, Z., Wynter, L., Xia, C. H., & Zhang, F. (2006). Parameter inference of queueing models for IT systems using end-to-end measurements. Performance Evaluation, 63(1), 36–60.

    CrossRef  Google Scholar 

  • Menascé, D. A. (2008). Computing missing service demand parameters for performance models. In Proceedings of the 34th International Computer Measurement Group Conference (CMG 2008), Las Vegas, Nevada (pp. 241–248).

    Google Scholar 

  • Menascé, D. A., Almeida, V. A., & Dowdy, L. W. (2004). Performance by design: Computer capacity planning by example. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Nou, R., Kounev, S., Julià, F., & Torres, J. (2009). Autonomic QoS control in enterprise grid environments using online simulation. Journal of Systems and Software, 82(3), 486–502.

    CrossRef  Google Scholar 

  • Pacifici, G., Segmuller, W., Spreitzer, M., & Tantawi, A. N. (2008). CPU demand for web serving: Measurement analysis and dynamic estimation. Performance Evaluation, 65(6–7), 531–553.

    CrossRef  Google Scholar 

  • Pérez, J. F., Casale, G., & Pacheco-Sanchez, S. (2015). Estimating Computational requirements in multi-threaded applications. IEEE Transactions on Software Engineering, 41(3), 264–278.

    CrossRef  Google Scholar 

  • Pérez, J. F., Pacheco-Sanchez, S., & Casale, G. (2013). An offline demand estimation method for multi-threaded applications. In Proceedings of the 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2013), San Francisco, CA (pp. 21–30). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Rolia, J., Kalbasi, A., Krishnamurthy, D., & Dawson, S. (2010). Resource demand modeling for multi-tier services. In Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering (ICPE 2010), San Jose, CA (pp. 207–216). New York, NY: ACM.

    CrossRef  Google Scholar 

  • Rolia, J., & Vetland, V. (1995). Parameter estimation for performance models of distributed application systems. In Proceedings of the 1995 Conference of the Centre for Advanced Studies on Collaborative Research (CASCON 1995), Toronto, Ontario (p. 54). Indianapolis, Indiana: IBM Press.

    Google Scholar 

  • Sharma, A. B., Bhagwan, R., Choudhury, M., Golubchik, L., Govindan, R., & Voelker, G. M. (2008). Automatic request categorization in internet services. SIGMETRICS Performance Evaluation Review, 36(2), 16–25.

    CrossRef  Google Scholar 

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

    CrossRef  MathSciNet  Google Scholar 

  • Spinner, S. (2017). Self-aware Resource Management in Virtualized Data Centers. PhD Thesis, Würzburg: University of Würzburg.

    Google Scholar 

  • Spinner, S., Casale, G., Brosig, F., & Kounev, S. (2015). Evaluating approaches to resource demand estimation. Performance Evaluation, 92, 51–71.

    CrossRef  Google Scholar 

  • Stewart, C., Kelly, T., & Zhang, A. (2007). Exploiting nonstationarity for performance prediction. In ACM SIGOPS Operating Systems Review: Proceedings of the 2nd ACM SIGOPS EuroSys European Conference on Computer Systems, Lisbon (Vol. 41.3, pp. 31–44). New York, NY: ACM.

    Google Scholar 

  • Sutton, C., & Jordan, M. I. (2011). Bayesian inference for queueing networks and modeling of internet services. The Annals of Applied Statistics, 5(1), 254–282.

    CrossRef  MathSciNet  Google Scholar 

  • Urgaonkar, B., Pacifici, G., Shenoy, P. J., Spreitzer, M., & Tantawi, A. N. (2007). Analytic modeling of multitier internet applications. ACM Transactions on the Web, 1(1), 2-es.

    Google Scholar 

  • Wang, W., & Casale, G. (2013). Bayesian service demand estimation using Gibbs sampling. In Proceedings of the 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS 2013) (pp. 567–576). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., & Zhong, H. (2012). Application-level CPU consumption estimation: Towards performance isolation of multi-tenancy web applications. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing (CLOUD 2012), Honolulu, HI (pp. 439–446). Washington, DC: IEEE Computer Society.

    CrossRef  Google Scholar 

  • Wang, W., Huang, X., Song, Y., Zhang, W., Wei, J., Zhong, H., et al. (2011). A statistical approach for estimating CPU consumption in shared Java middleware server. In Proceedings of the 2011 IEEE 35th Annual Computer Software and Applications Conference (COMPSAC 2011), Munich (pp. 541–546). Washington, DC: IEEE Computer Society.

    CrossRef  Google Scholar 

  • Wynter, L., Xia, C. H., & Zhang, F. (2004). Parameter inference of queueing models for IT systems using end-to-end measurements. In Proceedings of the ACM SIGMETRICS International Conference on Measurements and Modeling of Computer Systems (SIGMETRICS 2004) (pp. 408–409). New York, NY: ACM.

    Google Scholar 

  • Zhang, L., Xia, C. H., Squillante, M. S., & Mills, W. N. (2002). Workload service requirements analysis: A queueing network optimization approach. In Proceedings of the 10th IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS 2002), Fort Worth, TX (pp. 23–32). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Zhang, Q., Smirni, E., & Cherkasova, L. (2007). A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In Proceedings of the Fourth International Conference on Autonomic Computing (ICAC 2007) (p. 27). Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Zheng, T., Woodside, C. M., & Litoiu, M. (2008). Performance model estimation and tracking using optimal filters. IEEE Transactions on Software Engineering, 34(3), 391–406.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kounev, S., Lange, KD., Kistowski, J.v. (2020). Resource Demand Estimation. In: Systems Benchmarking. Springer, Cham. https://doi.org/10.1007/978-3-030-41705-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41705-5_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41704-8

  • Online ISBN: 978-3-030-41705-5

  • eBook Packages: Computer ScienceComputer Science (R0)