Skip to main content

Elasticity of Cloud Platforms

  • Chapter
  • 1197 Accesses

Abstract

In this chapter, we present a set of intuitively understandable metrics for characterizing the elasticity of a cloud platform including ways to aggregate them. The focus is on IaaS clouds; however, the presented approach can also be applied in the context of other types of cloud platforms. The metrics support evaluating both the accuracy and the timing aspects of elastic behavior. We discuss how the metrics can be aggregated and used to compare the elasticity of cloud platforms.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, R. F., Sousa, F. R., Lifschitz, S., & Machado, J. C. (2013). On defining metrics for elasticity of cloud databases. In Proc. of the 28th Brazilian Symposium on Databases (SBBD 2013), Recife, Pernambuco, Brazil.

    Google Scholar 

  • Bauer, A., Herbst, N. R., Spinner, S., Ali-Eldin, A., & Kounev, S. (2019). Chameleon: A hybrid, proactive auto-scaling mechanism on a level-playing field. IEEE Transactions on Parallel and Distributed Systems, 30(4), 800–813. Piscataway, NJ: IEEE.

    Google Scholar 

  • Chandler, D., Coskun, N., Baset, S., Nahum, E., Khandker, S. R. M., Daly, T., et al. (2012). Report on cloud computing to the OSG steering committee. Tech. rep. Gainesville, VA.

    Google Scholar 

  • David, H. A. (1987). Ranking from unbalanced paired-comparison data. Biometrika, 74(2), 432–436. Oxford: Oxford University Press.

    Google Scholar 

  • Duboc, L., Rosenblum, D., & Wicks, T. (2007). A framework for characterization and analysis of software system scalability. In Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-FSE 2007), Dubrovnik, Croatia (pp. 375–384). New York, NY: ACM.

    Google Scholar 

  • Galante, G., & Bona, L. C. E. de. (2012). A survey on cloud computing elasticity. In Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing (UCC 2012), Chicago, IL, USA (pp. 263–270). Washington, DC: IEEE Computer Society.

    CrossRef  Google Scholar 

  • Herbst, N. R., Bauer, A., Kounev, S., Oikonomou, G., Eyk, E. van, Kousiouris, G., et al. (2018). Quantifying cloud performance and dependability: Taxonomy metric design, and emerging challenges. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 3(4), 19:1–19:36. New York, NY: ACM.

    Google Scholar 

  • Herbst, N. R., Kounev, S., & Reussner, R. (2013). Elasticity in cloud computing: What it is, and what it is not. In Proceedings of the 10th International Conference on Autonomic Computing (ICAC 2013), San Jose, CA, USA (pp. 23–27). USENIX.

    Google Scholar 

  • Herbst, N. R., Kounev, S., Weber, A., & Groenda, H. (2015). BUNGEE: An elasticity benchmark for self-adaptive IaaS cloud environments. In Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2015), Florence, Italy (pp. 46–56). Piscataway, NJ: IEEE.

    Google Scholar 

  • Herbst, N. R., Krebs, R., Oikonomou, G., Kousiouris, G., Evangelinou, A., Iosup, A., et al. (2016). Ready for rain? A view from SPEC research on the future of cloud metrics. Tech. rep. SPEC-RG-2016-01. Gainesville, VA: SPEC RG—Cloud Working Group, Standard Performance Evaluation Corporation (SPEC).

    Google Scholar 

  • Islam, S., Lee, K., Fekete, A., and Liu, A. (2012). How a consumer can measure elasticity for cloud platforms. In Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE 2012), Boston, MA, USA (pp. 85–96). New York, NY: ACM.

    CrossRef  Google Scholar 

  • Janert, P. (2013). Feedback control for computer systems. Sebastopol, CA: O’Reilly and Associates.

    Google Scholar 

  • Jennings, B., & Stadler, R. (2015). Resource management in clouds: Survey and research challenges. Journal of Network and Systems Management, 23(3), pp. 567–619. New York, NY: Springer.

    Google Scholar 

  • Jogalekar, P., & Woodside, M. (2000). Evaluating the scalability of distributed systems. IEEE Transactions on Parallel and Distributed Systems, 11(6), 589–603.

    CrossRef  Google Scholar 

  • Lorido-Botran, T., Miguel-Alonso, J., & Lozano, J. A. (2014). A review of auto-scaling techniques for elastic applications in cloud environments. Journal of Grid Computing, 12(4), 559–592. Amsterdam: Springer.

    Google Scholar 

  • Papadopoulos, A. V., Versluis, L., Bauer, A., Herbst, N. R., Kistowski, J. von, Ali-Eldin, A., et al. (2019a). Methodological principles for reproducible performance evaluation in cloud computing. IEEE Transactions on Software Engineering. Washington, DC: IEEE Computer Society.

    Google Scholar 

  • Papadopoulos, A. V., Versluis, L., Bauer, A., Herbst, N. R., Kistowski, J. von, Ali-Eldin, A., et al. (2019b). Methodological principles for reproducible performance evaluation in cloud computing - A SPEC research technical report. Tech. rep. SPEC-RG-2019-04. Gainesville, VA: SPEC RG—Cloud Working Group, Standard Performance Evaluation Corporation (SPEC).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Kounev, S., Lange, KD., Kistowski, J.v. (2020). Elasticity of Cloud Platforms. In: Systems Benchmarking. Springer, Cham. https://doi.org/10.1007/978-3-030-41705-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41705-5_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41704-8

  • Online ISBN: 978-3-030-41705-5

  • eBook Packages: Computer ScienceComputer Science (R0)