Skip to main content

Fish Brains: Anatomy, Functionality, and Evolutionary Relationships

Part of the Animal Welfare book series (AWNS,volume 20)

Abstract

In this chapter, we provide an overview of the anatomy, functionality, and evolution of the fish nervous system. Our focus will be on the brain in the vertebrate group with the greatest variation in brain form and function, the actinopterygian bony fishes. We first describe central (CNS) and autonomic (ANS) nervous systems and then characterize the major distal components of the CNS (spinal cord, spinal nerves, cranial nerves), before we summarize the brain regions and their connections and highlight some similarities and differences between different fish taxa. The second part of this chapter is devoted to variation in fish brain anatomy, including a discussion of comparative brain anatomy evolution and brain plasticity. We finish with a summary of the evolutionary costs and benefits of brain size based on results in guppies (Poecilia reticulata) artificially selected for large and small brains. With respect to fish welfare, we conclude that their great brain diversity reflects the diverse cognitive needs of fishes. However, their lifelong high rates of neurogenesis should also make individuals capable to cognitively adapt to a certain range of environmental conditions.

Keywords

  • Fish brain
  • Brain anatomy
  • Ecomorphology
  • Brain size
  • Artificial selection

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-41675-1_6
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-41675-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5

References

  • Allis EP (1897) The cranial muscles and cranial and first spinal nerves in Amia calva, vol 12. Ginn & Company, p 487

    Google Scholar 

  • Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE (2016) Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad Sci U S A 113(9):2532–2537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bone Q (1977) Mauthner neurons in elasmobranchs. J Mar Biol Assoc U K 57:253–259

    Google Scholar 

  • Bone Q, Marshal NB, Blaxter LHS (1982) Biology of fishes. Chapman & Hall, London

    Google Scholar 

  • Brandstatter R, Kotrschal K (1990) Brain growth-patterns in 4 European cyprinid fish species (Cyprinidae, Teleostei) – roach (Rutilus-rutilus), bream (Abramis-brama), common carp (Cyprinus-carpio) and sabre carp (Pelecus-cultratus). Brain Behav Evol 35:195–211

    CAS  PubMed  Google Scholar 

  • Buechel SD, Boussard A, Kotrschal A, van der Bijl W, Kolm N (2018) Brain size affects performance in a reversal-learning test. Proc R Soc B 285:20172031

    PubMed  Google Scholar 

  • Burns JG, Saravanan A, Rodd FH (2009) Rearing environment affects the brain size of guppies: lab-reared guppies have smaller brains than wild-caught guppies. Ethology 115:122–133

    Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    CAS  PubMed  Google Scholar 

  • Corral-López A, Eckerström-Liedholm S, Der Bijl WV, Kotrschal A, Kolm N (2015) No association between brain size and male sexual behavior in the guppy. Curr Zool 61:265–273

    Google Scholar 

  • Corral-Lopez A, Bloch N, Kotrschal A, van der Bijl W, Buechel S, Mank JE, Kolm N (2017) Female brain size affects the assessment of male attractiveness during mate choice. Sci Adv 3:e1601990

    PubMed  PubMed Central  Google Scholar 

  • Corral-López A, Garate-Olaizola M, Buechel SD, Kolm N, Kotrschal A (2017) On the role of body size, brain size, and eye size in visual acuity. Behav Ecol Sociobiol 71:179

    PubMed  PubMed Central  Google Scholar 

  • Corral-López A, Kotrschal A, Kolm N (2018) Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. J Exp Biol. https://doi.org/10.1242/jeb.175240

  • Costa SS, Andrade R, Carneiro LA, Gonçalves EJ, Kotrschal K, Oliveira RF (2011) Sex differences in the dorsolateral telencephalon correlate with home range size in blenniid fish. Brain Behav Evol 77:55–64

    PubMed  Google Scholar 

  • Davis R, Northcutt R (1983) Fish neurobiology, vol 2, Higher brain areas and functions. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Dugatkin LA, Godin JGJ (1992) Predator inspection, shoaling and foraging under predation Hazard in the Trinidadian guppy, Poecilia-reticulata. Environ Biol Fish 34:265–276

    Google Scholar 

  • Endler JA (1980) Natural-selection on color patterns in Poecilia-reticulata. Evolution 34:76–91

    PubMed  Google Scholar 

  • Finger TE (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210:671–673

    CAS  PubMed  Google Scholar 

  • Fischer S, Bessert-Nettelbeck M, Kotrschal A, Taborsky B (2015) Rearing-group size determines social competence and brain structure in a cooperatively breeding cichlid. Am Nat 186:123

    PubMed  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Google Scholar 

  • Gonda A, Herczeg G, Merila J (2011) Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius) – local adaptation or environmentally induced variation? BMC Evol Biol 11:75

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Voyer A, Winberg S, Kolm N (2009) Social fishes and single mothers: brain evolution in African cichlids. Proc R Soc B Biol Sci 276:161–167

    Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    PubMed  PubMed Central  Google Scholar 

  • Herrick CJ (1902) A note on the significance of the size of nerve fibers in fishes. J Comp Neurol 12(4):329–334

    Google Scholar 

  • Herrick CJ (1906) On the centers for taste and touch in the medulla oblongata of fishes. J Comp Neurol Psychol 16(6):403–439

    Google Scholar 

  • Houde AE (1987) Mate choice based upon naturally-occurring color-pattern variation in a guppy population. Evolution 41:1–10

    PubMed  Google Scholar 

  • Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490

    CAS  PubMed  Google Scholar 

  • Kanwal JS, Finger TE (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Springer, pp 79–102

    Google Scholar 

  • Kihslinger RL, Nevitt GA (2006) Early rearing environment impacts cerebellar growth in juvenile salmon. J Exp Biol 209:504–509

    PubMed  Google Scholar 

  • Kotrschal A, Taborsky B (2010) Resource defence or exploded lek?–a question of perspective. Ethology 116:1189–1198

    Google Scholar 

  • Kotrschal K, Adam H, Brandstätter R, Junger H, Zaunreiter M, Goldschmid A (1990) Larval size constraints determine directional ontogenetic shifts in the visual system of teleosts. J Zool Syst Evol Res 28:166–182

    Google Scholar 

  • Kotrschal K, van Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408

    Google Scholar 

  • Kotrschal A, Heckel G, Bonfils D, Taborsky B (2012a) Life-stage specific environments in a cichlid fish: implications for inducible maternal effects. Evol Ecol 26:123–137

    Google Scholar 

  • Kotrschal A, Rogell B, Maklakov AA, Kolm N (2012b) Sex-specific plasticity in brain morphology depends on social environment of the guppy, Poecilia reticulata. Behav Ecol Sociobiol 66:1485–1492

    Google Scholar 

  • Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S, Maklakov AA, Kolm N (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr Biol 23:168–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Corral-Lopez A, Amcoff M, Kolm N (2014a) A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behav Ecol 26:527–532

    PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Lievens EJ, Dahlbom J, Bundsen A, Semenova S, Sundvik M, Maklakov AA, Winberg S, Panula P, Kolm N (2014b) Artificial selection on relative brain size reveals a positive genetic correlation between brain size and proactive personality in the guppy. Evolution 68:1139–1149

    PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Buechel S, Zala S, Corral Lopez A, Penn DJ, Kolm N (2015a) Brain size affects female but not male survival under predation threat. Ecol Lett 18:646–652

    PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Corral-Lopez A, Szidat S, Kolm N (2015b) The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth. Evolution 69:3013–3020

    PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Corral-Lopez A, Zajitschek S, Immler S, Maklakov AA, Kolm N (2015c) Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size. J Evol Biol 28:841–850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotrschal A, Kolm N, Penn DJ (2016) Selection for brain size impairs innate, but not adaptive immune responses. Proc R Soc B 283:20152857

    PubMed  Google Scholar 

  • Kotrschal A, Zeng HL, van der Bijl W, Öhman-Mägi C, Kotrschal K, Pelckmans K, Kolm N (2017) Evolution of brain region volumes during artificial selection for relative brain size. Evolution 71:2942–2951

    PubMed  Google Scholar 

  • Kotrschal A, Corral-Lopez A, Kolm N (2019) Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol Lett 15:20190137

    PubMed  PubMed Central  Google Scholar 

  • Kruska DC (1988) The brain of the basking shark (Cetorhinus maximus). Brain Behav Evol 32(6):353–363

    CAS  PubMed  Google Scholar 

  • Kuzawa CW, Chugani HT, Grossman LI, Lipovich L, Muzik O, Hof PR, Wildman DE, Sherwood CC, Leonard WR, Lange N (2014) Metabolic costs and evolutionary implications of human brain development. Proc Natl Acad Sci U S A 111:13010–13015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lema SC, Hodges MJ, Marchetti MP, Nevitt GA (2005) Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. Comp Biochem Physiol A Mol Integr Physiol 141:327–335

    PubMed  Google Scholar 

  • Lisney TJ, Bennett MB, Collin SP (2007) Volumetric analysis of sensory brain areas indicates ontogenetic shifts in the relative importance of sensory systems in elasmobranchs. Raffles Bull Zool 14:7–15

    Google Scholar 

  • MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM, Bania AE, Barnard AM, Boogert NJ, Brannon EM, Bray EE, Bray J, Brent LJN, Burkart JM, Call J, Cantlon JF, Cheke LG, Clayton NS, Delgado MM, DiVincenti LJ, Fujita K, Herrmann E, Hiramatsu C, Jacobs LF, Jordan KE, Laude JR, Leimgruber KL, Messer EJE, de A. Moura AC, Ostojiƒá L, Picard A, Platt ML, Plotnik JM, Range F, Reader SM, Reddy RB, Sandel AA, Santos LR, Schumann K, Seed AM, Sewall KB, Shaw RC, Slocombe KE, Su Y, Takimoto A, Tan J, Tao R, van Schaik CP, Viranyi Z, Visalberghi E, Wade JC, Watanabe A, Widness J, Young JK, Zentall TR, Zhao Y (2014) The evolution of self-control. Proc Natl Acad Sci U S A 111:E2140–E2148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38

    CAS  PubMed  Google Scholar 

  • Marhounová L, Kotrschal A, Kverková K, Kolm N, Němec P (2019) Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 73(9):2003–2012

    PubMed  PubMed Central  Google Scholar 

  • Mills SM (1932) The double innervation of fish melanophores. J Exp Zool A Ecol Genet Physiol 64:231–244

    Google Scholar 

  • Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2018

    Google Scholar 

  • Nieuwenhuys R (1982) An overview of the organization of the brain of actinopterygian fishes. Am Zool 22:287–310

    Google Scholar 

  • Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer, Heidelberg

    Google Scholar 

  • Northcutt RG (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Washington, DC, pp 117–193

    Google Scholar 

  • Northcutt RG, Davis R (1983) Fish neurobiology: brain stem and sense organs. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y, Imada H, Tanaka M, Kawasaki T, Yuba S, Taniguchi Y (2014) A neural mechanism underlying mating preferences for familiar individuals in medaka fish. Science 343:91–94

    CAS  PubMed  Google Scholar 

  • Östlund-Nilsson S, Mayer I, Huntingford FA (2007) Biology of the three-spined stickleback. CRC Press, Boca Raton, FL

    Google Scholar 

  • Park PJ, Chase I, Bell MA (2012) Phenotypic plasticity of the threespine stickleback Gasterosteus aculeatus telencephalon in response to experience in captivity. Curr Zool 58:189–210

    Google Scholar 

  • Pollen AA, Dobberfuhl AP, Scace J, Igulu MM, Renn SCP, Shumway CA, Hofmann HA (2007) Environmental complexity and social organization sculpt the brain in Lake Tanganyikan cichlid fish. Brain Behav Evol 70:21–39

    PubMed  Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions (part 1 of 2). Brain Behav Evol 41:14–25

    CAS  PubMed  Google Scholar 

  • Portavella M, Vargas J, Torres B, Salas C (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57:397–399

    CAS  PubMed  Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578

    CAS  PubMed  Google Scholar 

  • Rodríguez F, Durán E, Gomez A, Ocana F, Alvarez E, Jiménez-Moya F, Broglio C, Salas C (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365–370

    PubMed  Google Scholar 

  • Salas C, Broglio C, Durán E, Gómez A, Ocaña FM, Jiménez-Moya F, Rodríguez F (2006) Neuropsychology of learning and memory in teleost fish. Zebrafish 3:157–171

    PubMed  Google Scholar 

  • Schellart NA (1991) Interrelations between the auditory, the visual and the lateral line systems of teleosts; a mini-review of modelling sensory capabilities. Neth J Zool 42:459–477

    Google Scholar 

  • Shettleworth SJ (2010) Cognition, evolution, and behavior, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Sibbing F (1991) Food capture and oral processing. In: Nelson J, Winfield IJ (eds) Cyprinid fishes. Springer, pp 377–412

    Google Scholar 

  • Sørensen C, Øverli Ø, Summers CH, Nilsson GE (2007) Social regulation of neurogenesis in teleosts. Brain Behav Evol 70:239–246

    PubMed  Google Scholar 

  • Striedter GF (2005) Principles of brain evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Szabó I (1973) Path neuron system of medial forebrain bundle as a possible substrate for hypothalamic self-stimulation. Physiol Behav 10:315–328

    PubMed  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, New York

    Google Scholar 

  • Tsuboi M, Gonzalez-Voyer A, Kolm N (2014a) Phenotypic integration of brain size and head morphology in Lake Tanganyika Cichlids. BMC Evol Biol 14:39

    PubMed  PubMed Central  Google Scholar 

  • Tsuboi M, Husby A, Kotrschal A, Hayward A, Buechel S, Zidar J, Lovle H, Kolm N (2014b) Comparative support for the expensive tissue hypothesis: big brains are correlated with smaller gut and greater parental investment in Lake Tanganyika cichlids. Evolution 69:190–200

    PubMed  PubMed Central  Google Scholar 

  • Tsuboi M, Shoji J, Sogabe A, Ahnesjö I, Kolm N (2016) Within species support for the expensive tissue hypothesis: a negative association between brain size and visceral fat storage in females of the Pacific seaweed pipefish. Ecol Evol 6:647–655

    PubMed  PubMed Central  Google Scholar 

  • Tsuboi M, Lim ACO, Ooi BL, Yip MY, Chong VC, Ahnesjö I, Kolm N (2017) Brain size evolution in pipefishes and seahorses: the role of feeding ecology, life history and sexual selection. J Evol Biol 30:150–160

    CAS  PubMed  Google Scholar 

  • van der Bijl W, Thyselius M, Kotrschal A, Kolm N (2015) Brain size affects the behavioral response to predators in female guppies (Poecilia reticulata). Proc R Soc B Biol Sci 282:20151132

    Google Scholar 

  • van Staaden MJ, Huber R, Kaufmann LS, Liem KF (1995) Brain evolution in cichlids of the African Great Lakes: brain and body size, general patterns and evolutionary trends. Zoology 98:165–178

    Google Scholar 

  • Vanegas H, Ito H (1983) Morphological aspects of the teleostean visual system: a review. Brain Res Rev 6:117–137

    Google Scholar 

  • Verzijden MN, Ten Cate C, Servedio MR, Kozak GM, Boughman JW, Svensson EI (2012) The impact of learning on sexual selection and speciation. Trends Ecol Evol 27:511–519

    PubMed  Google Scholar 

  • Von Kupffer C (1891) The development of the cranial nerves of vertebrates. J Comp Neurol 1:246–264

    Google Scholar 

  • Voneida TJ, Fish SE (1984) Central nervous system changes related to the reduction of visual input in a naturally blind fish (Astyanax hubbsi). Am Zool 24:775–782

    Google Scholar 

  • Wagner H-J (2003) Volumetric analysis of brain areas indicates a shift in sensory orientation during development in the deep-sea grenadier Coryphaenoides armatus. Mar Biol 142:791–797

    Google Scholar 

  • Webb J, Northcutt R (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol 50:139–151

    CAS  PubMed  Google Scholar 

  • Weiger T, Lametschwandtner A, Kotrschal K, Krautgartner WD (1988) Vascularization of the telencephalic choroid plexus of a ganoid fish [Acipenser ruthenus (L.)]. Dev Dyn 182:33–41

    CAS  Google Scholar 

  • West-Eberhard M (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wullimann MF (1994) The teleostean torus longitudinalis. Eur J Morphol 32:235–242

    CAS  PubMed  Google Scholar 

  • Young JZ (1931) Memoirs: on the autonomic nervous system of the teleostean fish Uranoscopus scaber. J Cell Sci 2:491–536

    Google Scholar 

  • Young J (1980) Nervous control of gut movements in Lophius. J Mar Biol Assoc U K 60:19–30

    Google Scholar 

  • Zaunreiter M, Kotrschal K, Goldschmid A, Adam H (1985) Ecomorphology of the optic system in 5 species of blennies (Teleostei). Fortschr Zool 30:731–734

    Google Scholar 

  • Zupanc GKH (2001) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav Evol 58:250–275

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kotrschal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kotrschal, A., Kotrschal, K. (2020). Fish Brains: Anatomy, Functionality, and Evolutionary Relationships. In: Kristiansen, T., Fernö, A., Pavlidis, M., van de Vis, H. (eds) The Welfare of Fish. Animal Welfare, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-41675-1_6

Download citation