Skip to main content

Welfare of Farmed Fish in Different Production Systems and Operations

  • Chapter
  • First Online:
The Welfare of Fish

Abstract

When fish are reared for food production in aquaculture, they can be held in different types of rearing systems and subjected to various husbandry routines and operations. Each of these systems or operations can present different welfare risks to the fish, which in turn are dependent upon both the species and its life stage. In this chapter, we address and outline potential welfare hazards the fish may encounter in a wide range of existing and emerging rearing systems used for on-growing. These systems include: (1) pond-based aquaculture, (2) flow-through systems, (3) semi-closed containment systems, (4) RAS, (5) net cages and (6) farming offshore using sea cages in exposed conditions. We also outline potential welfare hazards for two key farming operations: transport and slaughter. We present the tools the farmer can use to assess fish welfare during on-growing and also outline relevant welfare actions that can be taken to militate against welfare hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1997) Verordnung zum Schutz von Tieren in Zusammenhang mit der Schlachtung oder Tötung – TierSchlV (Tierschutz-Schlachtverordnung), vom 3. März 1997, Bundesgesetzblatt Jahrgang 1997 Teil I S. 405, zuletzt geändert am 13. April 2008 durch Bundesgesetzblatt Jahrgang 2008 Teil I Nr. 18, S. 855, Art. 19 vom 24. April 2006

    Google Scholar 

  • Anonymous (2006a) Transporting fish. https://thefishsite.com/articles/transporting-fish

  • Anonymous (2006b) Forskrift om slakterier og tilvirkingsanlegg for akvakulturdyr Kapittel 4. In: kystdepartementet F-O (ed) Nasjonale tilleggsbestemmelser om fiskevelferd. Oslo, pp 13–14

    Google Scholar 

  • Anonymous (2015). http://worldwideaquaculture.com/quick-easy-fish-farming-the-raceway-aquaculture-system

  • Anonymous (2017) China fishery statistical yearbook 2017. China Agriculture Press. ISBN: 9787109229419

    Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Google Scholar 

  • Belle SM, Nash CE (2008) Better management practices for net-pen aquaculture. In: Tucker CS, Hargreaves JA (eds) Environmental best management practices for aquaculture. Blackwell, Ames, pp 261–330

    Google Scholar 

  • Beveridge MCM (2004) Cage aquaculture, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Blancheton JP, Piedrahita R, Eding EH, Roque D’orbcastel E, Lemarie G, Bergheim A, Fivelstad S (2007) Intensification of landbased aquaculture production in single pass and reuse systems. In: Aquaculture engineering and environment (Chapter 2)

    Google Scholar 

  • Boerrigter JG, Manuel R, Bos R, Roques JA, Spanings T, Flik G, Vis HW (2015) Recovery from transportation by road of farmed European eel (Anguilla anguilla). Aquac Res 46:1248–1260

    CAS  Google Scholar 

  • Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Philos Trans R Soc B 365:2897–2912

    Google Scholar 

  • Boyd CE, Tucker CS (1998) Pond aquaculture water quality management. Kluwer Academic, Springer Science

    Google Scholar 

  • Braithwaite V, Ebbesson LO (2014) Pain and stress responses in farmed fish. Rev Sci Tech 33:245–253

    CAS  PubMed  Google Scholar 

  • Braithwaite V, Huntingford F, Van den Bos R (2013) Variation in emotion and cognition among fishes. J Agric Environ Ethics 26:7–23

    Google Scholar 

  • Branson EJ (2008) Fish welfare. Blackwell, Oxford, 300 p

    Google Scholar 

  • Bregnballe J (2015) A guide to recirculation aquaculture. Copenhagen, Eurofish, p 96

    Google Scholar 

  • Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21:1183–1226

    Google Scholar 

  • Chen C-Y, Wooster GA, Getchell RG, Bower PR, Timmons MB (2001) Nephrocalcinosis in Nile Tilapia from a recirculation aquaculture system: a case report. J Aquat Anim Health 134:368–372

    Google Scholar 

  • Cho K, Sakamoto J, Noda T, Nishiguchi T, Ueno M, Yamasaki Y, Yagi M, Kim D, Oda T (2016) Comparative studies on the fish-killing activities of Chattonella marina isolated in 1985 and Chattonella antiqua isolated in 2010, and their possible toxic factors. Biosci Biotechnol Biochem 80:811–817

    CAS  PubMed  Google Scholar 

  • Chopin T, Cooper JA, Reid G, Cross S, Moore C (2012) Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev Aquac 4:209–220

    Google Scholar 

  • Commission Regulation (EC) No 889/2008 (2008) Laying down detailed rules for implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with detailed rules on production, labelling and control. Off J Eur Union, L 250:1–84

    Google Scholar 

  • Council Regulation (EC) No 1099/2009 (2009) On the protection of animals at the time of killing. Off J Eur Communities, L 303:1–30

    Google Scholar 

  • Da Silva JM, Coimbra J, Wilson JM (2009) Ammonia sensitivity of the glass eel (Anguilla anguilla L.): salinity dependence and the role of branchial sodium/potassium adenosine triphosphatase. Environ Toxicol Chem 28:141–147

    PubMed  Google Scholar 

  • Dalla Villa P, Marahrens M, Velarde A, Calvo A, Di Nardo A, Kleinschmidt N, Fuentes Alvarez C, Truar A, Di Fede E, Otero JL Müller-Graf C (2009) Final report on project to develop animal welfare risk assessment guidelines on transport-project developed on the proposal CFP/EFSA/AHAW/2008/02, 127 pp

    Google Scholar 

  • Davidson J, Good C, Welsh C, Summerfelt S (2011) Abnormal swimming behavior and increased deformities in rainbow trout Oncorhynchus mykiss cultured in low exchange water recirculating aquaculture systems. Aquac Eng 45:109–117

    Google Scholar 

  • Dempster T, Korsøen O, Folkedal O, Juell JE, Oppedal F (2009) Submergence of Atlantic salmon (Salmo salar L.) in commercial scale sea-cages: a potential short-term solution to poor surface conditions. Aquaculture 288:254–263

    Google Scholar 

  • Edwards P (2008) The changing face of pond aquaculture in China. Glob Aquac Advocate 77–80. http://pdf.gaalliance.org/pdf/GAA-Edwards-Sept08.pdf

  • EFSA (2004) Opinion of the scientific panel on animal health and welfare (AHAW) on a request from the commission related to the welfare of animals during transport. Question N° EFSA-Q-2003-094. EFSA J 44, 181 pp

    Google Scholar 

  • EFSA (2008a) Scientific opinion of the panel on animal health and welfare on a request from the European Commission on animal welfare aspects of husbandry systems for farmed Atlantic salmon. EFSA J 736:1–31

    Google Scholar 

  • EFSA (2008b) Scientific opinion of the panel on animal health and animal welfare on a request from the European Commission on the animal welfare aspects of husbandry systems for farmed trout. EFSA J 796:1–22

    Google Scholar 

  • EFSA (2008c) Scientific opinion of the panel on animal health and welfare on a request from the European Commission on animal welfare aspects of husbandry systems for farmed European seabass and gilthead seabream. EFSA J 844:1–21

    Google Scholar 

  • EFSA (2008d) Scientific opinion of the panel on animal health and welfare on a request from the European Commission on animal welfare aspects of husbandry systems for farmed European eel. EFSA J 809:1–18

    Google Scholar 

  • EFSA (2008e) Scientific opinion of the panel on animal health and welfare on a request from the European Commission on animal welfare aspects of husbandry systems for farmed fish: carp. EFSA J 843:1–28

    Google Scholar 

  • EFSA (2008f) Welfare aspects of husbandry systems for farmed European seabass and gilthead seabream. EFSA J 844:1–89

    Google Scholar 

  • EFSA (2009a) Species-specific welfare aspects of the main systems of stunning and killing of farmed tuna. EFSA J 1072:1–53

    Google Scholar 

  • EFSA (2009b) Species-specific welfare aspects of the main systems of stunning and killing of farmed turbot. EFSA J 1073:1–34

    Google Scholar 

  • EFSA (2009c) Species-specific welfare aspects of the main systems of stunning and killing of farmed sea bass and sea bream. EFSA J 1010:1–52

    Google Scholar 

  • EFSA (2009d) Species-specific welfare aspects of the main systems of stunning and killing of farmed rainbow trout. EFSA J 1013:1–55

    Google Scholar 

  • EFSA (2009e) Species-specific welfare aspects of the main systems of stunning and killing of farmed Atlantic salmon. EFSA J 1012:1–77

    Google Scholar 

  • EFSA (2009f) Species-specific welfare aspects of the main systems of stunning and killing of farmed eel (Anguilla anguilla). EFSA J 1014:1–42

    Google Scholar 

  • EFSA (2009g) Species-specific welfare aspects of the main systems of stunning and killing of farmed carp. EFSA J 1013:1–37

    Google Scholar 

  • EFSA (2018) Guidance on the assessment criteria for applications for new or modified stunning methods regarding animal protection at the time of killing. EFSA J 16(7):5343, 35 pp

    Google Scholar 

  • Erikson U (2011) Assessment of different stunning methods and recovery of farmed Atlantic salmon (Salmo salar): isoeugenol, nitrogen and three levels of carbon dioxide. Anim Welf 20:365–375

    CAS  Google Scholar 

  • Erikson U, Lambooij B, Digre H, Reimert HGM, Bondø, Van de Vis H (2012) Conditions for instant electrical stunning of farmed Atlantic cod after de-watering, maintenance of unconsciousness, effects of stress, and fillet quality – a comparison with Aqui-S™. Aquaculture 324–325:135–144

    Google Scholar 

  • Espmark ÅM, Baeverfjord G (2009) Effects of hyperoxia on behavioural and physiological variables in farmed Atlantic salmon (Salmo salar) parr. Aquac Int 17:341–353

    Google Scholar 

  • FAO (1984) Inland aquaculture engineering. FAO, Rome. ISBN: 92-5-102168-6. http://www.fao.org/docrep/X5744E/x5744e0e.htm

  • FAO (2017) Fisheries and aquaculture software. FishStat Plus – Universal software for fishery statistical time series. In: FAO Fisheries and Aquaculture Department [online]. Rome. Updated 14 September 2017

    Google Scholar 

  • FAO (2018a) FAO yearbook. Fishery and aquaculture statistics 2016. FAO, Rome, p 108. ISBN: 9789250099873. http://www.fao.org/3/i9942t/I9942T.pdf

  • FAO (2018b) Cultured aquatic species information programme – Catla catla (Hamilton, 1822), 11 pp. http://www.fao.org/fishery/culturedspecies/Catla_catla/en

  • FAO (2018c) Cultured aquatic species information programme Carassius carassius (Linnaeus, 1758), 9 pp. http://www.fao.org/fishery/culturedspecies/Carassius_carassius/en

  • FAO (2018d) Cultured aquatic species information programme Hypophthalmichthys nobilis (Richardson, 1845), 10 pp. http://www.fao.org/fishery/culturedspecies/Hypophthalmichthys_nobilis/en

  • FAO (2018e) Cultured aquatic species information programme – Hypophthalmichthys molitrix (Valenciennes, 1844), 9 pp. http://www.fao.org/fishery/culturedspecies/Hypophthalmichthys_molitrix/en

  • FAO (2018f) Cultured aquatic species information programme, 12 pp. Oreochromis niloticus (Linnaeus, 1758). http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en

  • FEAP (2018). www.feap.info/Default.asp?CAT2=0&CAT1=0&CAT0=0&SHORTCUT=590, visited May 2018

  • Foss A, Grimsbo E, Vikingstad E, Nortvedt R, Slinde E, Roth B (2012) Live chilling of Atlantic salmon: physiological response to handling and temperature decrease on welfare. Fish Physiol Biochem 38:565–571

    CAS  PubMed  Google Scholar 

  • Funge-Smith S, Phillips MJ (2001) Aquaculture systems and species. In: Aquaculture in the third millennium. In: Subasinghe P, Bueno MJ, Phillips C, Hough SE, McGladdery, Arthur JR (eds) Technical proceedings of the conference on aquaculture in the third millennium, Bangkok, 20–25 Feb 2000, pp 129–135. NACA, FAO, Bangkok, Rome

    Google Scholar 

  • Gamborg C, Sandoe P (2005) Sustainability in farm breeding: a review. Livest Prod Syst 92:221–231

    Google Scholar 

  • Haenen OLM, Way K, Bergmann SM, Ariel E (2004) The emergence of koi herpesvirus and its significance to European aquaculture. Bull Eur Assoc Fish Pathol 24:293–307

    Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Google Scholar 

  • Hallegraeff GM (2003) Harmful algal blooms: a global overview. Manual on harmful marine microalgae. Monogr Oceanogr Methodol 11:25–49

    Google Scholar 

  • Handeland SO (2016) Postsmoltproduksjon I semi-lukkede anlegg; Resultat fra en komparativ feltstudie. Fjerde konferanse om resirkulering av vann i akvakultur på Sunndalsøra, 25–26 oktober 2016

    Google Scholar 

  • Handeland S Vindas M, Nilsen T, Ebbesson L, Sveier H, Tangen S, Nylund A (2015) Documentation of post smolt welfare and performance in large-scale Preline semi-containment system (CCS). CtrlAQUA annual report, pp 60–64

    Google Scholar 

  • Heller M (2017) Food product environmental footprint literature summary: land-based aquaculture. Center for Sustainable Systems, University of Michigan, 17 pp

    Google Scholar 

  • Hilbig R, Anken RH, Bauerle A, Rahmann H (2002) Susceptibility to motion sickness in fish: a parabolic aircraft flight study. J Gravit Physiol 9:29–30

    Google Scholar 

  • Hjeltnes B, Bornø G, Jansen MD, Haukaas A, Walde C (eds) (2017) Fiskehelserapporten 2016. Oslo, Veterinærinstituttet, p 121

    Google Scholar 

  • Horváth L, Urbányi B (2000) Fish species bred in Hungary. In: Horváth L (ed) Fish biology and fish breeding. Mezőgazda Kiadó, Budapest, pp 229–343 (in Hungarian)

    Google Scholar 

  • Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372

    Google Scholar 

  • Hvas M, Folkedal O, Imsland A, Oppedal F (2017a) The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar. J Exp Biol 220:2757–2764

    PubMed  Google Scholar 

  • Hvas M, Folkedal O, Solstorm D, Vågseth T, Gansel LA, Oppedal F (2017b) Assessing swimming capacity and schooling behaviour in farmed Atlantic salmon Salmo salar with experimental push-cages. Aquaculture 473:423–429

    Google Scholar 

  • Hvas M, Karlsbakk E, Mæhle S, Wright DW, Oppedal F (2017c) The gill parasite Paramoeba perurans compromises aerobic scope, swimming capacity and ion balance in Atlantic salmon. Conserv Physiol 5, cox066

    Google Scholar 

  • Iversen M, Finstad B, McKinley RS, Eliassen RA, Carlsen KT, Evjen T (2005) Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243:373–382

    Google Scholar 

  • Jackson DC (2004) Acid-base balance during hypoxic hypometabolism: selected vertebrate strategies. Respir Physiol Neurobiol 141:273–283

    CAS  PubMed  Google Scholar 

  • Jena AK, Biswas P, Saha H (2017) Advanced farming systems in aquaculture: strategies to enhance the production. Innov Farming 2:84–89

    Google Scholar 

  • Johansson D, Laursen F, Fernö A, Fosseidengen JE, Klebert P, Stien LH, Vågseth T, Oppedal F (2014) The interaction between water currents and salmon swimming behaviour in sea cages. PLoS One 9:e97635

    PubMed  PubMed Central  Google Scholar 

  • Jokumsen A, Svendsen LM (2010) Farming of freshwater rainbow trout in Denmark. Charlottenlund: DTU aqua. Institut for Akvatiske Ressourcer. DTU Aqua-rapport; no. 219-2010

    Google Scholar 

  • Karlsen C, Sørum H, Willasses NP, Åsbakk K (2012) Moritella viscosa bypasses Atlantic salmon epidermal keratocyte clearing activity and might use skin surfaces as a port of infection. Vet Microbiol 154:353–362

    PubMed  Google Scholar 

  • Kestin SC, Wotton SB, Gregory NG (1991) Effect of slaughter by removal from water on visual evoked activity in the brain and reflex movement of rainbow trout (Oncorhynchus mykiss). Vet Rec 128:443–446

    CAS  PubMed  Google Scholar 

  • King HR (2009) Fish transport in the aquaculture sector: an overview of the road transport of Atlantic salmon in Tasmania. J Vet Behav 4:163–168

    Google Scholar 

  • Kolarevic J, Bæverfjord G, Takle H, Ytteborg E, Megård Reiten BK, Nergård S, Terjesen BF (2014) Performance and welfare of Atlantic salmon smolt reared in recirculating or flow through aquaculture systems. Aquaculture 432:15–25

    Google Scholar 

  • Kolarevic J, Espmark AM, Aas-Hansen Ø, Terjesen BF, Saether BS (2015) Real time monitoring of water quality and fish welfare in recirculation aquaculture systems (RAS). Aquaculture Europe 2015, Rotterdam, 20–23 October 2015

    Google Scholar 

  • Kolarevic J, Aas-Hansen Ø, Espmark ÅM, Baeverfjord G, Terjesen BF, Damsgård B (2016) The use of acoustic acceleration transmitter tags for monitoring of Atlantic salmon swimming activity in recirculating aquaculture systems (RAS). Aquacult Eng 72–73:30–39

    Google Scholar 

  • Kolarevic J, Stien LH, Espmark ÅM, Izquierdo-Gomez D, Sæther B-S, Nilsson J, Oppedal F, Wright DW, Nielsen KV, Gismervik K, Iversen MH, Noble C (2018) Velferdsindikatorer for oppdrettslaks: Hvordan vurdere og dokumentere fiskevelferd – Del B. Bruk av operative velferdsindikatorer for ulike produksjonssystem. In: Noble C, Nilsson J, Stien LH, Iversen MH, Kolarevic J, Gismervik K (eds) Velferdsindikatorer for oppdrettslaks: Hvordan vurdere og dokumentere fiskevelferd, pp 142–223. ISBN: 978–82–8296-531-6

    Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda BD, De Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35:1291–1301

    CAS  PubMed  Google Scholar 

  • Lambooij E, Pilarczyk M, Bialowas H, Van den Boogaart JGM, Van de Vis JW (2007) Electrical and percussive stunning of the common carp (Cyprinus carpio L.): neurological and behavioural assessment. Aquac Eng 37:171–179

    Google Scholar 

  • Lambooij E, Grimsbø E, Van de Vis JW, Reimert HGM, Nortvedt R, Roth B (2010) Percussion and electrical stunning of Atlantic salmon (Salmo salar) after dewatering and subsequent effect on brain and heart activities. Aquaculture 300:107–112

    Google Scholar 

  • Lines JA, Spence J (2012) Safeguarding the welfare of farmed fish at harvest. Fish Physiol Biochem 38:153–162

    CAS  PubMed  Google Scholar 

  • Lines JA, Spence J (2014) Humane harvesting and slaughter of farmed fish. Rev Sci Tech 33:255–264

    CAS  PubMed  Google Scholar 

  • MacIntyre C, Ellis T, North BP, Turnbull JF (2008) The influences of water quality on the welfare of farmed trout: a review. In: Branson E (ed) Fish welfare. Blackwells Scientific, London, pp 150–178

    Google Scholar 

  • Manuel R, Boerrigter J, Roques J, van der Heul J, van den Bos R, Flik G, Van de Vis H (2014) Stress in African catfish (Clarias gariepinus) following overland transportation. Fish Physiol Biochem 40:33–44

    CAS  PubMed  Google Scholar 

  • Marine Harvest (2018) Salmon farming industry handbook, 113 pp

    Google Scholar 

  • Martins CIM, Eding EH, Verdegem MCJ, Heinsbroek LTN, Schneider O, Blancheton JP, d’Orbcastel ER, Verreth JAJ (2010) New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquac Eng 43:83–93

    Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15

    PubMed  Google Scholar 

  • Morzel M, Sohier S, Van de Vis JW (2002) Evaluation of slaughtering methods of turbots with respect to animal protection and flesh quality. J Sci Food Agric 82:19–28

    Google Scholar 

  • Nilsen A, Nielsen KV, Biering E, Bergheim A (2017) Effective protection against sea lice during the production of Atlantic salmon in floating enclosures. Aquaculture 466:41–50

    Google Scholar 

  • Nilsson J, Stien LH, Iversen MH, Kristiansen TS, Torgersen T, Oppedal F, Folkedal O, Hvas M, Gismervik K, Ellingsen K, Nielsen KV, Mejdell CM, Kolarevic J, Izquierdo-Gomez D, Sæther B-S, Espmark ÅM, Midling KØ, Roth B, Turnbull JF, Noble C (2018) Velferdsindikatorer for oppdrettslaks: Hvordan vurdere og dokumentere fiskevelferd – Del A. Fiskevelferd og oppdrettslaks, kunnskap og teoretisk bakgrunn. In: Noble C, Nilsson J, Stien LH, Iversen MH, Kolarevic J, Gismervik K (eds) Velferdsindikatorer for oppdrettslaks: Hvordan vurdere og dokumentere fiskevelferd, pp 10–141. ISBN: 978-82-8296-531-6

    Google Scholar 

  • Noble C, Gismervik K, Iversen, MH, Kolarevic J, Nilsson J, Stien LH, Turnbull JF (eds) (2018) Welfare indicators for farmed Atlantic salmon: tools for assessing fish. 351 pp. ISBN 978-82-8296-556-9

    Google Scholar 

  • Nomura M, Sloman KA, Von Keyserlingk MAG, Farrell AP (2009) Physiology and behaviour of Atlantic salmon (Salmo salar) smolts during commercial land and sea transport. Physiol Behav 96:233–243

    CAS  PubMed  Google Scholar 

  • Oppedal F, Dempster T, Stien LH (2011) Environmental drivers of Atlantic salmon behaviour in sea-cages: A review. Aquaculture 311:1–18

    Google Scholar 

  • Palić D, Norheim K, De Briyne N (2017) Fish diseases lacking treatment- gap analysis outcome. Report prepared for 15 pp. http://www.fve.org/uploads/publications/docs/fishmed_plus_gap_analysis_outcome_final.pdf

  • Poli BM, Parisi G, Scappini F, Zampacavallo G (2005) Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquac Int 13:29–49

    Google Scholar 

  • Reglero P, Balbın R, Ortega A, Alvarez-Berastegui D, Gordoa A, Torres AP, Moltó V, Pascual A, De la Gándara F, Alemany F (2013) First attempt to assess the viability of bluefin tuna spawning events in offshore cages located in an a priori favourable larval habitat. Sci Mar 77:585–596

    Google Scholar 

  • Remen M, Solstorm F, Bui S, Klebert P, Vågseth T, Solstorm D, Hvas M, Oppedal F (2016) Critical swimming speed in groups of Atlantic salmon Salmo salar. Aquac Environ Interact 8:659–664

    Google Scholar 

  • Rensel JE, Whyte JNC (2003) Finfish mariculture and harmful algal blooms. Manual on harmful marine microalgae. Monogr Oceanogr Methodol 11:693–722

    Google Scholar 

  • Robb DFH, Kestin SC (2002) Methods used to kill fish: field observations and literature reviewed. Anim Welf 11:269–282

    CAS  Google Scholar 

  • Robb DHF, Wotton SB, McKinstry JL, Sorensen NK, Kestin SC (2000) Commercial slaughter methods used on Atlantic salmon: determination of the onset of brain failure by electroencephalography. Vet Rec 147:298–303

    CAS  PubMed  Google Scholar 

  • Roberts RJ, Bullock AM, Turners M, Jones K, Tett P (1983) Mortalities of Salmo gairdneri exposed to cultures of Gyrodinium aureolum. J Mar Biol Assoc UK 63:741–743

    Google Scholar 

  • Roque d’Orbcastel E, Blancheton J-P, Belaud A (2009a) Water quality and rainbow trout performance in a Danish model farm recirculating system: comparison with a flow through system. Aquac Eng 40:135–143

    Google Scholar 

  • Roque d’Orbcastel E, Person-Le Ruyet J, Le Bayon N, Blancheton J-P (2009b) Comparative growth and welfare in rainbow trout reared in recirculating and flow through rearing systems. Aquac Eng 40:79–86

    Google Scholar 

  • Rosten TW, Kristensen T (2011) Best practice in live fish transport. NIVA REPORT SNO 6102-2011, 25 p

    Google Scholar 

  • Rosten TW, Ulgenes Y, Henriksen K, Terjesen BF, Biering E, Winther U (2011) Oppdrett av laks og ørret i lukkede anlegg – forprosjekt. SINTEF, Trondheim, 76 pp

    Google Scholar 

  • Roth B, Imsland A, Gunnarsson S, Foss A, Schelvis-Smit R (2007) Slaughter quality and rigor contraction in fanned turbot (Scophthalmus maximus); a comparison between different stunning methods. Aquaculture 272:754–761

    Google Scholar 

  • RSPCA (2018a) RSPCA welfare standards for farmed Atlantic salmon. RSPCA, Horsham, 96 p. https://science.rspca.org.uk/sciencegroup/farmanimals/standards/salmon. Accessed 25 May 2018

  • RSPCA (2018b) RSPCA welfare standards for farmed rainbow trout. RSPCA, Horsham, 51 p. https://science.rspca.org.uk/sciencegroup/farmanimals/standards/trout. Accessed 25 May 2018

  • Rud I, Kolarevic J, Holan AB, Berget I, Calabrese S, Terjesen BF (2016) Deep-sequencing of the microbiota in commercial-scale recirculating and semi-closed aquaculture systems for Atlantic salmon post-smolt production. Aquac Eng 78:50–62

    Google Scholar 

  • Sampaio FD, Freire CA (2016) An overview of stress physiology of fish transport: changes in water quality as a function of transport duration. Fish Fish 17:1055–1072

    Google Scholar 

  • Sattari A, Lambooij E, Sharifi H, Abbink W, Reimert H, Van de Vis JW (2010) Industrial dry electro-stunning followed by chilling and decapitation as a slaughter method in Claresse® (Heteroclarias sp.) and African catfish (Clarias gariepinus). Aquaculture 302:100–105

    Google Scholar 

  • Scherer R, Augusti PR, Steffens C, Bochi VC, Hecktheuer LH, Lazzari R, Radünz-Neto J, Pomblum SCG, Emanuelli T (2005) Effect of slaughter method on postmortem changes of grass carp (Ctenopharyngodon idella) stored in ice. J Food Sci 70:348–353

    Google Scholar 

  • Schram E, Abbink W, Roques J, Spanings T, De Vries P, Bierman S, Van de Vis H, Flik G (2010) The impact of elevated exogenous ammonia levels on growth, feed intake and physiology of African catfish (Clarias gariepinus). Aquaculture 306:108–115

    CAS  Google Scholar 

  • Schrijver R, Van de Vis H, Bergevoet R, Stokkers R, Dewar D, Van de Braak K, Witkamp S (2017) Welfare of farmed fish: common practices during transport and at slaughter. Final report written for the European Commission Directorate Health and Food Safety (SANTE), reference SANTE/2016/G2/009, Contract SANTE/2016/G2/SI2.736160, 186 p. https://publications.europa.eu/en/publication-detail/-/publication/59cfd558-cda5-11e7-5d5-01aa75ed71a1/language-en. ISBN: 978-92-79-75336-7

  • Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L (2012) Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38:85–105

    CAS  PubMed  Google Scholar 

  • Shoubridge EA, Hochachka PW (1980) Ethanol: novel end-product in vertebrate anaerobic metabolism. Science 209:308–309

    CAS  PubMed  Google Scholar 

  • Stickney RR (ed) (2000) Encyclopedia of aquaculture. Wiley-Interscience, New York

    Google Scholar 

  • Stien LH, Bracke M, Folkedal O, Nilsson J, Oppedal F, Torgersen T, Kittilsen S, Midtlyng PJ, Vindas MA, Øverli Ø, Kristiansen TS (2013) Salmon welfare index model (SWIM 1.0): a semantic model for overall welfare assessment of caged Atlantic salmon: review of the selected welfare indicators and model presentation. Rev Aquac 5:33–57

    Google Scholar 

  • Summerfelt ST, Zühlke A, Kolarevic J, Reiten BKM, Selset R, Gutierrez X, Terjesen BF (2015) Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH, in semi-commercial scale WRAS operated with moving bed bioreactors. Aquacult Eng 65:46–54

    Google Scholar 

  • Tacon AGJ, Halwart M (2007) Cage aquaculture: a global overview. In: Halwart M, Soto D, Arthur JR (eds) Cage aquaculture – regional reviews and global overview. FAO Fisheries Technical Paper, No. 498. FAO, Rome 2007, pp 1–16, 241 p

    Google Scholar 

  • Timmons M, Ebeling J (2007) Recirculating aquaculture, 2nd edn. NRAC publication no 01-007, Cayuga aqua ventures, Ithaca, 769 pp

    Google Scholar 

  • Troell M, Joyce A, Chopin T, Neori A, Buschmann AH, Fang J-G (2009) Ecological engineering in aquaculture – potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1–9

    Google Scholar 

  • Van de Vis H, Lambooij B (2016) Fish stunning and killing. In: Velarde A, Raj M (eds) Animal welfare at slaughter. 5M Publishing, Sheffield, pp 152–176

    Google Scholar 

  • Van de Vis H, Kestin S, Robb D, Oehlenschlager J, Lambooij B, Munkner W, Kuhlmann H, Kloosterboer K, Tejada M, Huidobro A, Ottera H, Roth B, Sørensen NK, Akse L, Byrne H, Nesvadba P (2003) Is humane slaughter of fish possible for industry? Aquac Res 34:211–220

    Google Scholar 

  • Van de Vis H, Kiessling A, Flik G, Mackenzie S (eds) (2012) Welfare of farmed fish in present and future production systems. Springer, Heidelberg, 312 pp

    Google Scholar 

  • Van de Vis H, Abbink W, Lambooij B, Bracke M (2014) Stunning and killing of farmed fish: how to put it into practice? In: Devine C, Dikeman M (eds) Encyclopedia of meat sciences 2e, vol 3. Elsevier, Oxford, pp 421–426

    Google Scholar 

  • Van den Burg EH, Peeters RR, Verhoye M, Meek J, Flik G, Van der Linden A (2005) Brain responses to ambient temperature fluctuations in fish: reduction of blood volume and initiation of a whole-body stress response. J Neurophysiol 93:2849–2855

    PubMed  Google Scholar 

  • Weimin M (2010) Recent developments in rice-fish culture in China: a holistic approach for livelihood improvement in rural areas. In: De Silva SS, Davy FB (eds) Success stories in Asian aquaculture. International Development Research Centre, Ottawa, ON, pp 15–40

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response of fish. Physiol Rev 77:591–625

    CAS  PubMed  Google Scholar 

  • Werkman M, Green DM, Murray AG, Turnbull JF (2011) The effectiveness of fallowing strategies in disease control in salmon aquaculture assessed with an SIS model. Prev Vet Med 98:64–73

    CAS  PubMed  Google Scholar 

  • Wood CM (1991) Acid-base and ion balance, metabolism, and their interactions, after exhaustive exercise in fish. J Exp Biol 160:285–308

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans van de Vis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van de Vis, H. et al. (2020). Welfare of Farmed Fish in Different Production Systems and Operations. In: Kristiansen, T., Fernö, A., Pavlidis, M., van de Vis, H. (eds) The Welfare of Fish. Animal Welfare, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-41675-1_14

Download citation

Publish with us

Policies and ethics