Skip to main content

Can Fish Experience Pain?

Part of the Animal Welfare book series (AWNS,volume 20)

Abstract

Experiencing pain is one of the key drivers of deciding whether to protect an animal under legislation and guidelines. Over the last two decades empirical evidence for fish experiencing pain has grown and this chapter reviews the current state of our knowledge. Defining animal pain has been problematic but a definition based upon whether whole animal responses to pain differ from non-painful stimuli and whether the experience alters future behavioural decisions and motivation is adopted. Studies show that fish have a similar nociceptive system to mammals, that behaviour is adversely affected and that this is prevented by pain-relieving drugs demonstrating that fish respond to pain in a different manner to innocuous events. Further, fish are motivated to avoid areas where pain has been experienced and are consumed by the painful event such that they do not exhibit normal fear or antipredator responses. Taken together these results make a compelling case for pain in fish. However, this topic is still debated and the chapter discusses the opposing opinions. If we accept pain occurs in fish then the wider implications of the use of fish must be considered. It would be in the public’s interest to keep fish healthy for a myriad of reasons including disease-free fish production, preventing zoonoses, conservation and sustainability of fish stocks and valid experimental results from laboratory studies using fish models.

Keywords

  • Animal welfare
  • Aquaculture
  • Behaviour
  • Fisheries
  • Nociception
  • Rainbow trout
  • Zebrafish

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-41675-1_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-41675-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6

References

  • Abbott JC, Dill LM (1985) Patterns of aggressive attack in juvenile steelhead trout (Salmo-Gairdneri). Can J Fish Aquat Sci 42:1702–1706

    Google Scholar 

  • Alves FL, Barbosa Júnior A, Hoffmann A (2013) Antinociception in piauçu fish induced by exposure to the conspecific alarm substance. Physiol Behav 110–111:58–62

    PubMed  Google Scholar 

  • Animal Sentience (2016). http://animalstudiesrepository.org/animsent/vol1/iss3/

  • Ari C, D’Agostino DP (2016) Contingency checking and self-directed behaviors in giant manta rays: do elasmobranchs have self-awareness? J Ethol 34:167–174

    Google Scholar 

  • Ashhurst DE (2004) The cartilaginous skeleton of an elasmobranch fish does not heal. Matrix Biol 23:15–22

    Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Google Scholar 

  • Ashley PJ, Sneddon LU, McCrohan CR (2006) Properties of corneal receptors in a teleost fish. Neurosci Lett 410:165–168

    CAS  PubMed  Google Scholar 

  • Ashley PJ, Sneddon LU, McCrohan CR (2007) Nociception in fish: stimulus-response properties of receptors on the head of trout Oncorhynchus mykiss. Brain Res 1166:47–54

    CAS  PubMed  Google Scholar 

  • Ashley PJ, Ringrose S, Edwards KL, McCrohan CR, Sneddon LU (2009) Effect of noxious stimulation upon antipredator responses and dominance status in rainbow trout. Anim Behav 77:403–410

    Google Scholar 

  • Barthel BL, Cooke SJ, Suski CD, Philipp DP (2003) Effects of landing net mesh type on injury and mortality in a freshwater recreational fishery. Fish Res 63:275–282

    Google Scholar 

  • Bejo Wolkers CP, Barbosa Junior A, Menescal-de-Oliveira L, Hoffmann A (2015a) Acute administration of a cannabinoid CB1 receptor antagonist impairs stress-induced antinociception in fish. Physiol Behav 142:37–41

    Google Scholar 

  • Bejo Wolkers CP, Barbosa Junior A, Menescal-de-Oliveira L, Hoffmann A (2015b) GABA(A)-benzodiazepine receptors in the dorsomedial (Dm) telencephalon modulate restraint-induced antinociception in the fish Leporinus macrocephalus. Physiol Behav 147:175–182

    Google Scholar 

  • Beukema JJ (1970a) Angling experiments with carp (Cyprinus carpio L.) II. Decreased catchability through one trial learning A. Neth J Zool 19:81–92

    Google Scholar 

  • Beukema JJ (1970b) Acquired hook avoidance in the pike Esox lucius L. fished with artificial and natural baits. J Fish Biol 2:155–160

    Google Scholar 

  • Bjørge MH, Nordgreen J, Janczak AM, Poppe T, Ranheim B, Horsberg TE (2011) Behavioural changes following intraperitonealvaccination in Atlantic salmon (Salmo salar). Appl Anim Behav Sci 133:127–135

    Google Scholar 

  • Broom DM (2007) Cognitive ability and sentience: which aquatic animals should be protected? Dis Aquat Anim 75:99–108

    CAS  Google Scholar 

  • Broom DM (2014) Sentience and animal welfare, CABI International, Wallingford, 185 p

    Google Scholar 

  • Brown C (2015) Fish intelligence, sentience and ethics. Anim Cogn 18:1–17

    Google Scholar 

  • Chandroo KP, Duncan IJH, Moccia RD (2004) Can fish suffer?: Perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 86:225–250

    Google Scholar 

  • Chervova LS, Lapshin DN (2011) Behavioral control of the efficiency of pharmacological anesthesia in fish. J Icthyol 51:1126–1132

    Google Scholar 

  • Chopin FS, Arimoto T (1995) The condition of fish escaping from fishing gears – a review. Fish Res 21:315–327

    Google Scholar 

  • Conte FS (2004) Stress and the welfare of cultured fish. Appl Anim Behav Sci 86:205–223

    Google Scholar 

  • Cooke SJ, Hogle WJ (2000) Effects of retention gear on the injury and short-term mortality of adult smallmouth bass. N Am J Fish Manag 20:1033–1039

    Google Scholar 

  • Cooke SJ, Sneddon LU (2007) Animal welfare perspectives on recreational angling. Appl Anim Behav Sci 104:176–198

    Google Scholar 

  • Correia AD, Cunha SR, Scholze M, Stevens ED (2011) A novel behavioral fish model of nociception for testing analgesics. Pharmaceuticals 4:665–680

    Google Scholar 

  • Damasio A, Damasio H (2016) Pain and other feelings in humans and animals. Anim Sent 3(33). http://animalstudiesrepository.org/animsent/vol1/iss3/33/

  • Dunlop R, Laming P (2005) Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorhynchus mykiss). J Pain 6:561–568

    PubMed  Google Scholar 

  • Dunlop R, Millsopp S, Laming P (2006) Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Appl Anim Behav Sci 97:255–271

    Google Scholar 

  • Ehrensing RH, Michell GF, Kastin AJ (1982) Similar antagonism of morphine analgesia by Mif-1 and naloxone in Carassius auratus. Pharmacol Biochem Behav 17:757–761

    CAS  PubMed  Google Scholar 

  • Elwood RW (2016) A single strand of argument with unfounded conclusion. Anim Sent 3(19). http://animalstudiesrepository.org/animsent/vol1/iss3/19/

  • Europa (2014a). https://ec.europa.eu/fisheries/cfp_en

  • Europa (2014b). https://ec.europa.eu/fisheries/cfp/aquaculture

  • FAWC (2014a). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/319323/Opinion_on_the_welfare_of_farmed_fish.pdf

  • FAWC (2014b). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/319331/Opinion_on_the_welfare_of_farmed_fish_at_the_time_of_killing.pdf

  • Flecknell P, Gledhill J, Richardson C (2007) Assessing animal health and welfare and recognising pain and distress. Altex-Alternativen Zu Tierexperimenten 24:82–83

    Google Scholar 

  • Frey UJ, Pirscher F (2018) Willingness to pay and moral stance: the case of farm animal welfare in Germany. PLoS One 13:e0202193

    PubMed  PubMed Central  Google Scholar 

  • Gentle MJ (1992) Pain in birds. Anim Welf 1:235–247

    Google Scholar 

  • Greaves K, Tuene S (2001) The form and context of aggressive behaviour in farmed Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 193:139–147

    Google Scholar 

  • Guénette SA, Giroux M, Vachon P (2013) Pain perception and anaesthesia in research frogs. Exp Anim 62:87–92

    PubMed  Google Scholar 

  • Heupel MR, Simpfendorfer CA, Bennett MB (1998) Analysis of tissue responses to fin tagging in Australian carcharhinids. J Fish Biol 52:610–620

    Google Scholar 

  • IASP (2019). https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698&navItemNumber=576. Accessed 08/03/19

  • Kajiura SM, Sebastian AP, Tricas TC (2000) Dermal bite wounds as indicators of reproductive seasonality and behaviour in the Atlantic stingray, Dasyatis sabina. Environ Biol Fish 58:23–31

    Google Scholar 

  • Key B (2016) Why fish do not feel pain. Anim Sent 1(1). http://animalstudiesrepository.org/animsent/vol1/iss3/1/

  • Kitchener PD, Fuller J, Snow PJ (2010) Central projections of primary sensory afferents to the spinal dorsal horn in the long-tailedstingray, Himantura fai. Brain Behav Evol 76:60–70

    Google Scholar 

  • Kuhajda MC, Thorn BE, Klinger MR, Rubin NJ (2002) The effect of headache pain on attention (encoding) and memory (recognition). Pain 97:213–221

    PubMed  Google Scholar 

  • Leonard RB (1985) Primary afferent receptive field properties and neurotransmitter candidates in a vertebrate lacking unmyelinmated fibres. Prog Clin Res 176:135–145

    CAS  Google Scholar 

  • Liang Y, Terashima S (1993) Physiological properties and morphological characteristics of cutaneous and mucosal mechanical nociceptive neurons with A-d peripheral axons in the trigeminal ganglia of crotaline snakes. J Comp Neurol 328:88–102

    CAS  PubMed  Google Scholar 

  • Lopez de Armentia ML, Cabanes C, Belmonte C (2000) Electrophysiological properties of identified trigeminal ganglion neurons innervating the cornea of the mouse. Neuroscience 101:1109–1115

    CAS  PubMed  Google Scholar 

  • Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU (2017a) Activity reduced by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J Exp Biol 220:1451–1458

    PubMed  Google Scholar 

  • Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU (2017b) Impact of analgesic drugs on the behavioural responses of larval zebrafish to potentially noxious temperatures. Appl Anim Behav Sci 188:97–105

    Google Scholar 

  • Lopez-Luna J, Canty MN, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU (2017c) Behavioural responses of fish larvae modulated by analgesic drugs after a stress exposure, vol 195. Appl Anim Behav Sci, p 115

    Google Scholar 

  • Lynn B (1994) The fibre composition of cutaneous nerves and the classification and response properties of cutaneous afferents, with particular reference to nociception. Pain Rev 1:172–183

    Google Scholar 

  • Malafoglia V, Bryant B, Raffaeli W, Giordano A, Bellipanni G (2013) The zebrafish as a model for nociception studies. J Cell Physiol 228:1956–1966

    CAS  PubMed  Google Scholar 

  • Matthews G, Wickelgren WO (1978) Trigeminal sensory neurons of the sea lamprey. J Comp Physiol A Sens Neural Behav Physiol 123:329–333

    Google Scholar 

  • Maximino C (2011) Modulation of nociceptive-like behavior in zebrafish (Danio rerio) by environmental stressors. Psychol Neurosci 4:149–155

    Google Scholar 

  • Merker BH (2016) The line drawn on pain still holds. Anim Sent 1(46). http://animalstudiesrepository.org/animsent/vol1/iss3/46/

  • Metcalfe JD (2009) Welfare in wild-capture marine fisheries. J Fish Biol 75:2855–2861

    CAS  PubMed  Google Scholar 

  • Mettam JM, Oulton LJ, McCrohan CR, Sneddon LU (2011) The efficacy of three types of analgesic drug in reducing pain in the rainbow trout, Oncorhynchus mykiss. Appl Anim Behav Sci 133:265–274

    Google Scholar 

  • Mettam JJ, McCrohan CR, Sneddon LU (2012) Characterisation of chemosensory trigeminal receptors in the rainbow trout (Oncorhynchus mykiss): responses to irritants and carbon dioxide. J Exp Biol 215:685–693

    PubMed  Google Scholar 

  • Millsopp S, Laming P (2008) Trade-offs between feeding and shock avoidance in goldfish (Carassius auratus). Appl Anim Behav Sci 113:247–254

    Google Scholar 

  • Miyashita S, Sawada Y, Hattori N, Nakatsukasa H, Okada T, Murata O, Kumai H (2000) Mortality of blue fin tuna Thunnus thynnus due to trauma caused by collision during grow out culture. J World Aquacult Soc 31:632–639

    Google Scholar 

  • MSC (2018). https://www.msc.org/media-centre/press-releases/press-release/seafood-consumers-want-less-pollution-and-more-fish-in-the-sea

  • Mulder M, Zomer S (2017) Dutch consumers’ willingness to pay for broiler welfare. J Appl Anim Welf Sci 20:137–154

    CAS  PubMed  Google Scholar 

  • Nasr MAF, Nicol CJ, Murrell JC (2012) Do laying hens with keel bone fractures experience pain? PLoS One 7:e42420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newby NC, Wilkie MP, Stevens ED (2009) Morphine uptake, disposition, and analgesic efficacy in the common goldfish (Carassius auratus). Can J Zool 87:388–399

    CAS  Google Scholar 

  • Nordgreen J, Horsberg TE, Ranheim B, Chen ACN (2007) Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail. J Comp Physiol A 193:1235–1242

    Google Scholar 

  • Nordgreen J, Garner JP, Janczak AM, Ranheim B, Muir WM, Horsberg TE (2009) Thermonociception in fish: effects of two different doses of morphine on thermal threshold and post-test behaviour in goldfish (Carassius auratus). Appl Anim Behav Sci 119:101–107

    Google Scholar 

  • Olla BL, Davis MW, Schreck CB (1997) Effects of simulated trawling on sablefish and walleye pollock: the role of light intensity, net velocity and towing duration. J Fish Biol 50:1181–1194

    Google Scholar 

  • Overmier JB, Hollis KL (1983) The teleostean telencephalon in learning. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2: higher brain areas and functions. University of Michigan Press, Ann Arbor, MI, pp 265–283

    Google Scholar 

  • Overmier JB, Hollis KL (1990) Fish in the think tank: learning, memory and integrated behaviour. In: Kesner RP, Olson DS (eds) Neurobiology of comparative cognition. Lawrence Erlbaum, Hillsdales, NJ, pp 205–236

    Google Scholar 

  • Pham TM, HagmanB, Codita A, Van Loo PP, Strömmer, L, Baumans V (2010). Housing environment influences the need forpain relief during post-operative recovery in mice. Physiol Behav 99:663–668

    Google Scholar 

  • Porcher IF (2005) On the gestation period of the blackfin reef shark, Carcharhinus melanopterus, in waters off Moorea, French Polynesia. MarBiol 146:1207–1211

    Google Scholar 

  • Portavella M, Vargas JP, Torres B, Salas C (2002) The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57:397–399

    CAS  PubMed  Google Scholar 

  • Portavella M, Torres B, Salas C, Papini MR (2004) Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362:75–78

    CAS  PubMed  Google Scholar 

  • Pottinger TG (1997) Changes in water quality within anglers' keepnets during the confinement of fish. Fish Manag Ecol 4:341–354

    Google Scholar 

  • Reilly SC, Quinn JP, Cossins AR, Sneddon LU (2008a) Novel candidate genes identified in the brain during nociception in common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss). Neurosci Lett 437:135–138

    CAS  PubMed  Google Scholar 

  • Reilly SC, Quinn JP, Cossins AR, Sneddon LU (2008b) Behavioural analysis of a nociceptive event in fish: comparisons between three species demonstrate specific responses. Appl Anim Behav Sci 114:248–259

    Google Scholar 

  • Rink E, Wullimann MF (2004) Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res 1011:206–220

    CAS  PubMed  Google Scholar 

  • Roques JAC, Abbink W, Geurds F, van de Vis H, Flik G (2010) Tailfin clipping, a painful procedure: studies on Nile tilapia and common carp. Physiol Behav 101:533–540

    CAS  PubMed  Google Scholar 

  • Roques JAC, Abbink W, Chereau G, Fourneyron A, Spanings T, Burggraaf D, van de Bos R, van de Vis H, Flik G (2012) Physiological and behavioral responses to an electrical stimulus in Mozambique tilapia (Oreochromis mossambicus). Fish Physiol Biochem 38:1019–1028

    CAS  PubMed  Google Scholar 

  • Rose JD (2002) The neurobehavioral nature of fishes and the question of awareness and pain. Rev Fish Sci 10:1–38

    Google Scholar 

  • Rose JD, Arlinghaus R, Cooke SJ, Diggles BK, Sawynok W, Stevens ED, Wynne CDL (2014) Can fish really feel pain? Fish Fish 15:97–133

    Google Scholar 

  • Rutherford KMD (2002) Assessing pain in animals. Anim Welf 11:31–53

    CAS  Google Scholar 

  • Schroeder P, Sneddon LU (2017) Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach. Appl Anim Behav Sci 187:93–102

    Google Scholar 

  • Sharpe CS, Thompson DA, Blankenship HL, Schreck CB (1998) Effects of routine handling and tagging procedures on physiological stress responses in juvenile Chinook salmon. Progress Fish Cult 60:81–87

    Google Scholar 

  • Shriver AJ (2016) Cortex necessary for pain – but not in sense that matters. Animal Sentience 3(27)

    Google Scholar 

  • Singhal G, Jaehne EJ, Corrigan F, Baune BT (2014) Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Front Cell Neurosci 8:97. https://doi.org/10.3389/fncel.2014.00097

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sneddon LU (2002) Anatomical and electrophysiological analysis of the trigeminal nerve in a teleost fish, Oncorhynchus mykiss. Neurosci Lett 319:167–171

    CAS  PubMed  Google Scholar 

  • Sneddon LU (2003a) The evidence for pain in fish: the use of morphine as an analgesic. Appl Anim Behav Sci 83:153–162

    Google Scholar 

  • Sneddon LU (2003b) Trigeminal somatosensory innervation of the head of a teleost fish with particular reference to nociception. Brain Res 972:44–52

    CAS  PubMed  Google Scholar 

  • Sneddon LU (2004) Evolution of nociception in vertebrates: comparative analysis of lower vertebrates. Brain Res Rev 46:123–130

    CAS  PubMed  Google Scholar 

  • Sneddon LU (2006) Ethics and welfare: pain perception in fish. Bull Eur Assoc Fish Pathol 26:6–10

    Google Scholar 

  • Sneddon LU (2009) Pain perception in fish indicators and endpoints. ILAR J 50:338–342

    CAS  PubMed  Google Scholar 

  • Sneddon LU (2011a) Pain perception in fish: evidence and implications for the use of fish. J Conscious Stud 18:209–229

    Google Scholar 

  • Sneddon LU (2011b) Cognition and welfare. In: Brown C, Laland K, Krause J (eds) Fish cognition and behavior, 2nd edn. Wiley-Blackwell, Oxford, pp 405–434

    Google Scholar 

  • Sneddon LU (2012) Clinical anaesthesia and analgesia in fish. J Exot Pet Med 21:32–43

    Google Scholar 

  • Sneddon LU (2013) Do painful sensations and fear exist in fish? In: van der Kemp TA, Lachance M (eds) Animal Suffering: From Science to Law, International Symposium. Carswell, Toronto, pp 93–112

    Google Scholar 

  • Sneddon LU (2015) Pain in aquatic animals. J Exp Biol 218:967–976

    PubMed  Google Scholar 

  • Sneddon LU (2018) Comparative physiology of nociception and pain. Physiology 33:63–73

    CAS  PubMed  Google Scholar 

  • Sneddon LU, Leach MC (2016) Anthropomorphic denial of fish pain. Anim Sent 1(28). http://animalstudiesrepository.org/animsent/vol1/iss3/28/

  • Sneddon LU, Wolfenden D (2012) How are fish affected by large scale fisheries: pain perception in fish? In: Soeters K (ed) See the truth. Nicolaas G. Pierson Foundation, Amsterdam, pp 77–90

    Google Scholar 

  • Sneddon LU, Braithwaite VA, Gentle MJ (2003a) Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc R Soc London Ser B Biol Sci 270:1115–1121

    Google Scholar 

  • Sneddon LU, Braithwaite VA, Gentle MJ (2003b) Novel object test: examining nociception and fear in the rainbow trout. J Pain 4:431–440

    PubMed  Google Scholar 

  • Sneddon LU, Elwood RW, Adamo S, Leach MC (2014) Defining and assessing pain in animals. Anim Behav 97:201–212

    Google Scholar 

  • Sneddon LU, Wolfenden DCC, Thomson JT (2016) Stress management and welfare. In: Schreck CB, Tort L, Farrell A, Brauner C (eds) Biology of stress in fish – fish physiology, 1st edn. Academic Press, Cambridge, MA, pp 463–539

    Google Scholar 

  • Sneddon LU, Halsey LG, Bury NR (2017) Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol 220:3007–3016

    PubMed  Google Scholar 

  • Snow PJ, Renshaw GMC, Hamlin KE (1996) Localization of enkephalin immunoreactivity in the spinal cord of the long-tailed ray Himantura fai. J Comp Neurol 367:264–273

    CAS  PubMed  Google Scholar 

  • St. John Smith E, Lewin GR (2009) Nociceptors: a phylogenetic review. J Comp Physiol A 195:1089–1106

    Google Scholar 

  • Stamp Dawkins M (2012) Why animals matter. Animal consciousness, animal welfare, and human well-being. Oxford University Press, Oxford

    Google Scholar 

  • Steeger TM, Grizzle JM, Weathers K, Newman M (1994) Bacterial diseases and mortality of angler-caught largemouth bass released after tournaments on Walter F. George reservoir, Alabama/Georgia. N Am J Fish Manag 14:435–441

    Google Scholar 

  • Suuronen P, Erickson DL, Orrensalo A (1996) Mortality of herring escaping from pelagic trawl cod ends. Fish Res 25:305–321

    Google Scholar 

  • Terashima S-i, Liang Y-F (1994) C mechanical nociceptive neurons in the crotaline trigeminal ganglia. Neurosci Lett 179(1–2):33–36

    CAS  PubMed  Google Scholar 

  • Thompson RB, Hunter CJ, Patten BG (1971) Studies of live and dead salmon that unmesh from gill nets. International North Pacific Fish Community Annual Report, pp 108–112

    Google Scholar 

  • Thunken T, Waltschyk N, Bakker TCM, Kullmann H (2009) Olfactory self-recognition in a cichlid fish. Anim Cogn 12:717–724

    PubMed  Google Scholar 

  • Turnbull JF (1992) Studies on dorsal fin rot in farmed Atlantic salmon (Salmo salar L.) parr. Ph.D. Thesis. University of Stirling

    Google Scholar 

  • Turnbull JF, Adams CE, Richards RH, Robertson DA (1998) Attack site and resultant damage during aggressive encounters in Atlantic salmon (Salmo salar L.) parr. Aquaculture 159:345–353

    Google Scholar 

  • Willenbring S, Stevens CW (1995) Thermal, mechanical and chemical peripheral sensation in amphibians – opioid and adrenergic effects. Life Sci 58:125–133

    CAS  Google Scholar 

  • Wong D, von Keyserlingk MAG, Richards JG, Weary DM (2014) Conditioned place avoidance of zebrafish (Danio rerio) to three chemicals used for euthanasia and anaesthesia. PLoS One 9:e88030

    PubMed  PubMed Central  Google Scholar 

  • Yoshida, M. and Hirano, R. (2010). Effects of local anesthesia of the cerebellum on classical fear conditioning in goldfish. Behav. Brain Funct. 6, 20.

    Google Scholar 

  • Young RF (1977) Fiber spectrum of the trigeminal sensory root of frog, cat and man determined by electron microscopy. In: Anderson DL, Matthews B (eds) Pain in the Trigeminal Region. Elsevier, Amsterdam, pp 137–160

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne U. Sneddon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sneddon, L.U. (2020). Can Fish Experience Pain?. In: Kristiansen, T., Fernö, A., Pavlidis, M., van de Vis, H. (eds) The Welfare of Fish. Animal Welfare, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-41675-1_10

Download citation