Skip to main content

On Nonadaptive Reductions to the Set of Random Strings and Its Dense Subsets

  • Chapter
  • First Online:
Complexity and Approximation

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12000))

Abstract

We explain our recent results [21] on the computational power of an arbitrary distinguisher for (not necessarily computable) hitting set generators. This work is motivated by the desire of showing the limits of black-box reductions to some distributional \(\mathsf {NP}\) problem. We show that a black-box nonadaptive randomized reduction to any distinguisher for (not only polynomial-time but also) exponential-time computable hitting set generators can be simulated in \(\mathsf {AM}\cap \mathsf {co} \mathsf {AM}\); we also show an upper bound of \(\mathsf {S}_2^\mathsf {NP}\) even if there is no computational bound on a hitting set generator. These results provide additional evidence that the recent worst-case to average-case reductions within \(\mathsf {NP}\) shown by Hirahara (2018, FOCS) are inherently non-black-box. (We omit all detailed arguments and proofs, which can be found in [21].)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As a black-box reduction to any distinguisher for G, it is required in [15] that there exists a single machine that computes a reduction to every oracle avoiding G. On the other hand, as stated in Theorem 1, we allow reductions to depend on oracles, which makes our results stronger.

  2. 2.

    We emphasize that we are concerned the nonadaptivity of reductions used in the security proof of pseudorandom generators. Several simplified constructions of pseudorandom generators \(G^f\) from one-way functions f (e.g., [16, 23]) are nonadaptive in the sense that \(G^f\) can be efficiently computed with nonadaptive oracle access to f; however, the security reductions of these constructions are adaptive because of the use of Holenstein’s uniform hardcore lemma [22]. Similarly, the reduction of [17, Lemma 6.5] is adaptive. (We note that, in the special case when the degeneracy of a one-way function is efficiently computable, the reduction of [17] is nonadaptive.).

References

  1. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: On basing one-way functions on NP-hardness. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 701–710 (2006)

    Google Scholar 

  2. Akavia, A., Goldreich, O., Goldwasser, S., Moshkovitz, D.: Erratum for: on basing one-way functions on NP-hardness. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 795–796 (2010)

    Google Scholar 

  3. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM J. Comput. 35(6), 1467–1493 (2006)

    Article  MathSciNet  Google Scholar 

  4. Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256, 2–8 (2017)

    Article  MathSciNet  Google Scholar 

  5. Allender, E., Friedman, L., Gasarch, W.I.: Limits on the computational power of random strings. Inf. Comput. 222, 80–92 (2013)

    Article  MathSciNet  Google Scholar 

  6. Allender, E., Hirahara, S.: New insights on the (non-) hardness of circuit minimization and related problems. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 54:1–54:14 (2017)

    Article  MathSciNet  Google Scholar 

  7. Applebaum, B., Barak, B., Xiao, D.: On basing lower-bounds for learning on worst-case assumptions. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp. 211–220 (2008)

    Google Scholar 

  8. Bogdanov, A., Brzuska, C.: On basing size-verifiable one-way functions on NP-hardness. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 1–6. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_1

    Chapter  Google Scholar 

  9. Bogdanov, A., Trevisan, L.: On worst-case to average-case reductions for NP problems. SIAM J. Comput. 36(4), 1119–1159 (2006)

    Article  MathSciNet  Google Scholar 

  10. Carmosino, M.L., Impagliazzo, R., Kabanets, V., Kolokolova, A.: Learning algorithms from natural proofs. In: Proceedings of the Conference on Computational Complexity (CCC), pp. 10:1–10:24 (2016)

    Google Scholar 

  11. Feigenbaum, J., Fortnow, L.: Random-self-reducibility of complete sets. SIAM J. Comput. 22(5), 994–1005 (1993)

    Article  MathSciNet  Google Scholar 

  12. Fortnow, L.: The complexity of perfect zero-knowledge. Adv. Comput. Res. 5, 327–343 (1989)

    Article  Google Scholar 

  13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  14. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 59–68 (1986)

    Google Scholar 

  15. Gutfreund, D., Vadhan, S.: Limitations of hardness vs. randomness under uniform reductions. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -2008. LNCS, vol. 5171, pp. 469–482. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85363-3_37

    Chapter  Google Scholar 

  16. Haitner, I., Reingold, O., Vadhan, S.P.: Efficiency improvements in constructing pseudorandom generators from one-way functions. SIAM J. Comput. 42(3), 1405–1430 (2013)

    Article  MathSciNet  Google Scholar 

  17. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp. 247–258 (2018)

    Google Scholar 

  19. Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: Proceedings of the Computational Complexity Conference (CCC), pp. 7:1–7:20 (2017)

    Google Scholar 

  20. Hirahara, S., Watanabe, O.: Limits of minimum circuit size problem as oracle. In: Proceedings of the Conference on Computational Complexity (CCC), pp. 18:1–18:20 (2016)

    Google Scholar 

  21. Hirahara, S., Watanabe, O.: On nonadaptive reductions to the set of random strings and its dense subsets. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 26, p. 25 (2019)

    Google Scholar 

  22. Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 664–673 (2005)

    Google Scholar 

  23. Holenstein, T.: Pseudorandom generators from one-way functions: a simple construction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 443–461. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_23

    Chapter  Google Scholar 

  24. Kabanets, V., Cai, J.: Circuit minimization problem. In: Proceedings of the Symposium on Theory of Computing (STOC), pp. 73–79 (2000)

    Google Scholar 

  25. Ko, K.: On helping by robust oracle machines. Theor. Comput. Sci. 52, 15–36 (1987)

    Article  MathSciNet  Google Scholar 

  26. Ko, K.: On the complexity of learning minimum time-bounded turing machines. SIAM J. Comput. 20(5), 962–986 (1991)

    Article  MathSciNet  Google Scholar 

  27. Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Inf. Control 61(1), 15–37 (1984)

    Article  MathSciNet  Google Scholar 

  28. Nisan, N., Wigderson, A.: Hardness vs Randomness. J. Comput. Syst. Sci. 49(2), 149–167 (1994)

    Article  MathSciNet  Google Scholar 

  29. Ostrovsky, R.: One-way functions, hard on average problems, and statistical zero-knowledge proofs. In: Proceedings of the Structure in Complexity Theory Conference, pp. 133–138 (1991)

    Google Scholar 

  30. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)

    Article  MathSciNet  Google Scholar 

  31. Rudich, S.: Super-bits, demi-bits, and NP/qpoly-natural proofs. In: Rolim, J. (ed.) RANDOM 1997. LNCS, vol. 1269, pp. 85–93. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63248-4_8

    Chapter  Google Scholar 

  32. Trevisan, L., Vadhan, S.P.: Pseudorandomness and average-case complexity via uniform reductions. Comput. Complex. 16(4), 331–364 (2007)

    Article  MathSciNet  Google Scholar 

  33. Vadhan, S.P.: An unconditional study of computational zero knowledge. SIAM J. Comput. 36(4), 1160–1214 (2006)

    Article  MathSciNet  Google Scholar 

  34. Yap, C.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26, 287–300 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirahara, S., Watanabe, O. (2020). On Nonadaptive Reductions to the Set of Random Strings and Its Dense Subsets. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41672-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41671-3

  • Online ISBN: 978-3-030-41672-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics