Skip to main content

Preparation and Applications of Milk Polar Lipids/MFGM

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

Milk fat is a mosaic encompassing a large variety of chemically different compounds including tri-glycerides (TG), di- glycerides (DG), and mono-glycerides (MG), cholesterol and cholesterol esters, free fatty acids (FA), glycolipids and phospholipids (PLs) (Jensen, 2002; Pimentel, Gomes, Pintado, et al., 2016). This diversity in lipid species owes to the complexity of the milk fat fraction within the whole milk matrix. A more simplistic categorisation of these different milk fat compounds is based on their individual polarity, i.e. polar or non-polar. Polar lipids are essential for the emulsification of fat in milk (Contarini & Povolo, 2013). PLs constitute the polar lipid fraction and while only accounting for between 0.2% and 1.0% of the total milk lipids (Lopez, 2011) they make a major functional contribution through their inherent ability to emulsify/stabilise the fat in milk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affolter, M., Grass, L., Vanrobaeys, F., Casado B., & Kussmann, M. (2010). Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. Journal of Proteomics, 6, 1079–1088.

    Article  CAS  Google Scholar 

  • Akoh, C. C., & Min, D. B. (2008). Food lipids: Chemistry, nutrition and biotechnology. New York, NY: CRC Press.

    Book  Google Scholar 

  • Astaire, J. C., Ward, R., German, J. B., & Jiménez-Flores, R. (2003). Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. Journal of Dairy Science, 86, 2297–2307.

    Article  CAS  PubMed  Google Scholar 

  • Availli, A., & Contarini, G. (2005). Determination of phospholipids in dairy products by SPE/HPLC/ELSD. Journal of Chromatography. A, 1, 185–190.

    Article  CAS  Google Scholar 

  • Bargmann, W., & Knoop, A. (1959). Über die morpjologie der milchsekretion lichte-und elekronemikroskopische studien an der milchdrüse der ratte. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 49, 344–388.

    Article  CAS  PubMed  Google Scholar 

  • Barry, K. M., Dinan, T. G., & Kelly, P. M. (2017a). Selective enrichment of dairy phospholipids in a buttermilk substrate through investigation of enzymatic hydrolysis of milk proteins in conjunction with ultrafiltration. International Dairy Journal, 68, 80–87.

    Article  CAS  Google Scholar 

  • Barry, K. M., Dinan, T. G., & Kelly, P. M. (2017b). Pilot scale production of a phospholipid-enriched dairy ingredient by means of an optimised integrated process employing enzymatic hydrolysis, ultrafiltration and super-critical fluid extraction. Innovative Food Science and Emerging Technologies, 41, 301–306.

    Article  CAS  Google Scholar 

  • Barry, K. M., Dinan, T. G., Murray, B. A., & Kelly, P. M. (2016). Comparison of dairy phospholipid preparative extraction protocols in combination with analysis by high performance liquid chromatography couple to a charged aerosol detector. International Dairy Journal, 56, 179–185.

    Article  CAS  Google Scholar 

  • Barry, K. M., Dinan, T. G., Stanton, C., & Kelly, P. M. (2018). Investigation of the neurotrophic effect of dairy phospholipids on cortical neuron outgrowth and stimulation. Journal of Functional Foods, 40, 60–67.

    Article  CAS  Google Scholar 

  • Bauer, H. (1971). Ultrastructural observations on the milk fat globule envelope of cow’s milk. Journal of Dairy Science, 55, 1375–1387.

    Article  Google Scholar 

  • Berra, B., Colombo, I., Scottocornola, E., & Giacosa, A. (2002). Dietary sphingolipids in colorectal cancer prevention. European Journal of Cancer Prevention, 1, 193–197.

    Article  Google Scholar 

  • Bitman, J., & Wood, D. L. (1990). Changes in milk fat phospholipids during lactation. Journal of Dairy Science, 73, 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  • Bligh, E. G., & Dryer, W. (1959). A raid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Britten, M., Lamothe, S., & Robitaille, G. (2008). Effect of cream treatment on phospholipids and protein recovery in butter-making process. International Journal of Food Science and Technology, 43, 651–657.

    Article  CAS  Google Scholar 

  • Brown, D. A., & London, E. (2000). Structure and function of sphingolipids and cholesterol rich membrane rafts. The Journal of Biological Chemistry, 275, 17221–17224.

    Article  CAS  PubMed  Google Scholar 

  • Burling, H., & Gaverholt, G. (2008). Milk-a new source for bioactive phospholipids for use in food formulations. Lipid Technology, 20, 229–231.

    Article  CAS  Google Scholar 

  • Caboni, M. F., Menotta, S., & Lercker, G. (1996). Separation and analysis of phospholipids in different foods with a light-scattering detector. Journal of the American Oil Chemists’ Society, 73, 1561–1566.

    Article  CAS  Google Scholar 

  • Calvano, C. D., de Ceglie, C., Aresta, A., Facchini L. A., & Zambonin C. G. (2013). MALDI-TOF mass spectrometric determination of intact phospholipids as markers of illegal bovine milk adulteration of high-quality milk. Analytical and Bioanalytical Chemistry, 405, 1641–1649.

    Article  CAS  PubMed  Google Scholar 

  • Cequier-Sánchez, E., Rodríguez, C., Ravelo, Á., & Zárate, R. (2008). Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. Journal of Agricultural and Food Chemistry, 56, 4297–4303.

    Article  PubMed  CAS  Google Scholar 

  • Chong, B. M., Reigan, P., Mayle-Combs, K. D., Orlicky, D. J., & McManaman, J. L. (2011). Determinants of adipophilin function in milk lipid formation and secretion. Trends in Endocrinology and Metabolism, 22, 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Christe, W. W. (2003). Lipids: Their structure and occurrence. In W. W. Christie (Ed.), Lipid analysis. Isolation, separation, identification and structural analysis of lipids (3rd ed., pp. 3–36). Bridgewater, UK: The Oily Press.

    Google Scholar 

  • Clare, D. A., Zheng, Z., Hassan, H. M., Swaisgood, H. E., & Catignani, G. L.(2008). Antimicrobial properties of milkfat globule membrane fractions. Journal of Food Protection, 71, 126–133.

    Article  CAS  PubMed  Google Scholar 

  • Contarini, G., & Povolo, M. (2013). Phospholipids in milkfat: Composition, biological and technological significance, and analytical strategies. International Journal of Molecular Sciences, 14, 2808–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corredig, M., & Dalgleish, D. G. (1997). Isolates from industrial buttermilk: Emulsifying properties of materials derived from the milk fat globule membrane. Journal of Agricultural and Food Chemistry, 45, 4595–4600.

    Article  CAS  Google Scholar 

  • Corredig, M., Roesch, R. R., & Dalgleish, D. G. (2003). Production of a novel ingredient from buttermilk. Journal of Dairy Science, 86, 2744–2750.

    Article  CAS  PubMed  Google Scholar 

  • Costa, M. R., Elias-Argote, X. E., Jiménez- Flores, R., & Gigante, M. L. (2010). Use of ultrafiltration and supercritical fluid extraction to obtain a whey buttermilk powder enriched in milk fat globule membrane phospholipids. International Dairy Journal, 20, 598–602.

    Article  CAS  Google Scholar 

  • Cultler, R. G., & Mattson, M. P. (2001). Sphingomyelin and ceramide as regulators of development and lifespan. Mechanisms of Ageing and Development, 122, 895–908.

    Article  Google Scholar 

  • de Chaves, E. P., & Sipione, S. (2009). Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBES Letters, 584, 1748–1759.

    Article  CAS  Google Scholar 

  • Deeth, H. C. (1997). The role of phospholipids in the stability of milk fat globules. Australian Journal of Dairy Technology, 52, 44–46.

    CAS  Google Scholar 

  • Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & van Camp, J. (2008) Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18, 436–457.

    Article  CAS  Google Scholar 

  • Donato, P., Cacciola, F., Cichello, F., Russo, M., Dugo, P., & Mondello, L. (2011). Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. Journal of Chromatography. A, 1218, 6476–6482.

    Article  CAS  PubMed  Google Scholar 

  • Evers, J. M., Haverkamp, R. G., Holroyd, S. E., Jameson, G. B., Mackenzie, D. D. S., & McCarthy, O. J. (2008). Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. International Dairy Journal, 18, 1081–1089.

    Article  CAS  Google Scholar 

  • Fagan, P., & Wijesundera, C. (2004). Liquid chromatographic analysis of milk phospholipids with online pre-concentration. Journal of Chromatography. A, 1054, 241–249.

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT. (2015). World cow butter production. Retreived from http://faostat3.fao.org/download/O/OP/E

  • Farhang, B., Kakuda, Y., & Corredig, M. (2012). Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Science & Technology, 92, 353–366.

    Article  CAS  Google Scholar 

  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biological Chemistry, 226, 497–509.

    CAS  PubMed  Google Scholar 

  • Fong, B. Y., & Norris, C. S. (2009). Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. Journal of Agricultural and Food Chemistry, 57, 6021–6028.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. New York, NY: Springer.

    Google Scholar 

  • Fuchs, B., Süß, R., Teuber, K., Eibisch, M., & Schiller, J. (2011). Lipid analysis by thin-layer chromatography-A review of the current state. Journal of Chromatography. A, 1218, 2754–2774.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Gordon, K. C., & Singh, H. (2012). Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chemistry, 132, 1996–2006.

    Article  CAS  Google Scholar 

  • Gallier, S., Gragson, D., Cabral, C., Jiménez-Flores, R., & Everett, D. W. (2010). Composition and fatty acid distribution of bovine milk phospholipids from processed milk products. Journal of Agricultural and Food Chemistry, 58, 10503–10511.

    Google Scholar 

  • Garcia, C., Lutz, N. W., Confort-Gouny, S., Cozzone, P. J., Armand, M, & Bernard, M. (2012). Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chemistry, 165, 1777–1783.

    Google Scholar 

  • Gentner, P. R., Bauer, M., & Dieterich, I. (1981). Thin-layer chromatography of phospholipids: Separation of major phospholipid classes of milk without previous isolation from total lipid extracts. Journal of Chromatography. A, 206, 200–204.

    Article  CAS  Google Scholar 

  • Guan, J., MacGibbon, A., Fong, B., Zhang, R., Liu, K., Rowan, A., et al. (2015). Long-term supplementation with beta serum concentrate (BSC), a complex of milk lipids, during post-natal brain development improves memory in rats. Nutrients, 7, 4526–4541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gülseren, I., Guri, A., & Corredig, M. (2012). Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Digestion, 3, 36–45.

    Article  CAS  Google Scholar 

  • Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90, 420–246.

    Article  CAS  PubMed  Google Scholar 

  • Harmon, C. M., & Abumrad, N. A. (1993). Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: Isolation and ammo-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. The Journal of Membrane Biology, 133, 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84, 245–258.

    Article  CAS  PubMed  Google Scholar 

  • Hertervig, E., Nilsson, A., Cheng, Y., & Duan, R. D. (2003). Purified intestinal alkaline sphingomyelinase inhibits proliferation without inducing apoptosis in HT-29 colon carcinoma cells. Journal of Cancer Research and Clinical Oncology, 129, 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Hirmo, S., Kelm, S., Iwersen, M., Hotta, K., Goso, Y., Ishihara, K., et al (1998). Inhibition of helicobacter pylorisialic acid-specific hemagglutination by human gastrointestinal mucins and milk glycoproteins. Pathogens and Disease, 20, 275–281.

    CAS  Google Scholar 

  • Holzmüller, W., & Kulozik, U. (2016). Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings- A critical review. International Dairy Journal, 61, 51–66.

    Article  CAS  Google Scholar 

  • Holzmüller, W., Müller, M., Himbert, D., & Kulozik, U. (2016). Impact of cream washing on fat globules and milk fat globule membrane proteins. International Dairy Journal, 59, 52–61.

    Article  CAS  Google Scholar 

  • IDF. (1987). Dried milk, dried whey, dried buttermilk and dried butter serum. Determination of fat content (Röse Gottlieb reference method). Brussels, Belgium: International IDF Standard 9C.

    Google Scholar 

  • Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to december 2000. Journal of Dairy Science, 85, 295–350.

    Article  CAS  PubMed  Google Scholar 

  • Kanno, C. (1989). Emulsifying properties of bovine milk fat globule membrane in milk fat emulsion: Conditions for the reconstitution of milk fat globules. Journal of Food Science, 57, 1534–1539.

    Article  Google Scholar 

  • Kasinos, M., Le, T. T., & Van der Meeren, P. (2014). Improved heat stability of recombined evaporated milk emulsions upon addition of enriched dairy by-products. Food Hydrocolloids, 34, 112–118.

    Article  CAS  Google Scholar 

  • Keenan, T. W., & Dylewski, D. P. (1995). Intracellular origin of the milk lipid globules and the nature and structure of the milk lipid globule membrane. In P. F. Fox (Ed.), Advanced dairy chemistry 2: Lipids (2nd ed., pp. 89–130). London, UK: Chapman and Hall.

    Google Scholar 

  • Keenan, T. W., & Mather, I. H. (2006). Intracellular origin of milk fat globules and the nature of the milk fat globule membrane. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry 2: Lipids (3rd ed., pp. 137–171). New York, NY: Springer.

    Chapter  Google Scholar 

  • Kielbowicz, G., Micek, P., & Wawrzenczyk, C. (2013). A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids. Talanta, 105, 28–363.

    Article  CAS  PubMed  Google Scholar 

  • Konrad, G., Kleinschmidt, T., & Lorenz, C. (2013). Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. International Dairy Journal, 30, 39–44.

    Article  CAS  Google Scholar 

  • Kuchta-Noctor, A. M., Murray, B. A., Stanton, C., Devery, R., & Kelly, P. M. (2016). Anticancer activity of buttermilk against SW480 colon cancer cells is associated with caspase-independent cell death and attenuation of Wnt, Akt, and ERK signalling. Nutrition and Cancer, 68, 1234–1246.

    Article  CAS  PubMed  Google Scholar 

  • Le, T. T., Debyser, G., Gilbert, W., Struijs, K., van Camp, J., de Wiele, T. V., et al. (2013). Distribution and isolation of milk fat globule membrane proteins during dairy processing as revealed by proteomic analysis. International Dairy Journal, 32, 110–120.

    Article  CAS  Google Scholar 

  • Le, T. T., Miocinovic, J., Nguyen, T. M., Rombaut, R., van Camp, J., & Dewettinck, K. (2011). Improved solvent extraction procedure and high-performance liquid chromatography-evaporative light-scattering detector method for analysis of polar lipids from dairy materials. Journal of Agricultural and Food Chemistry, 59, 10407–10413.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C. (2011). Milk fat globules enveloped by their own biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science, 16, 391–404.

    Article  CAS  Google Scholar 

  • Lopez, C., Briard-Bion, V., Ménard, O., Rousseau, F., Pradel, P., & Besle, J. M. (2008). Phospholipid, Sphingolipid, and fatty acid composition of the milk fat globule membrane are modified by diet. Journal of Agricultural and Food Chemistry, 56, 5226–5236.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., et al. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125, 355–368.

    Article  CAS  Google Scholar 

  • Lopez, C., & Ménard, O. (2011). Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids and Surfaces. B, Biointerfaces, 83, 29–41.

    Article  CAS  PubMed  Google Scholar 

  • MacGibbon, A. K. H., & Taylor, M. W. (2006). Composition and structure of bovine milk lipids. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry 2: Lipids (3rd ed., pp. 1–42). New York, NY: Springer.

    Google Scholar 

  • MacKenzie, A., Vyssotski, M., & Nekrasov, E. (2009). Quantitative analysis of dairy phospholipids by 31P NMR. Journal of the American Oil Chemists’ Society, 86, 757–763.

    Article  CAS  Google Scholar 

  • Mather, I. H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. Journal of Dairy Science, 83, 203–247.

    Article  CAS  PubMed  Google Scholar 

  • Mather, I. H., & Keenan, T. W. (1998). Origin and secretion of milk lipids. Journal of Mammary Gland Biology and Neoplasia, 3, 259–273.

    Article  CAS  PubMed  Google Scholar 

  • Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., & Schwudke, D. (2008). Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 49, 1137–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson, A. V., & Kitchen, B. J. (1983). Reviews of the progress of dairy science: The bovine milk fat globule membrane–its formation, composition, structure and behaviour in milk and dairy products. The Journal of Dairy Research, 50, 107–133.

    Article  CAS  Google Scholar 

  • Morin, P., Britten, M., Jiménez- Flores, R., & Pouliot, Y. (2007). Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components. Journal of Dairy Science, 90, 2132–2140.

    Article  CAS  PubMed  Google Scholar 

  • Morin, P., Jiménez- Flores, R., & Pouliot, Y. (2007). Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. International Dairy Journal, 17, 1179–1187.

    Article  CAS  Google Scholar 

  • Morin, P., Jiménez-Flores, R., & Pouliot, Y. (2004). Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration. Journal of Dairy Science, 87, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Morin, P., Pouliot, Y., & Jiménez-Flores, R. (2006). A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. Journal of Food Engineering, 77, 521–528.

    Article  CAS  Google Scholar 

  • Morrison, W. R., Jack, E. L., & Smith, L. M. (1965). Fatty acids of bovine milk glycolipids and phospholipids and their specific distribution in the diacylglycerophospholipids. Journal of the American Chemical Society, 45, 1142–1147.

    Google Scholar 

  • Mudd, A. T., Alexander, L. S., Berding, K., Waworuntu, R. V., Berg, B. M., Donovan, S. M., et al. (2016). Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Frontiers in Pediatrics, 4, 1–10.

    Google Scholar 

  • Nguyen, H. T. H., Ong, L., Hoque, A., Kentish, S. E., Williamson, N., Ang, C.-S., et al. (2017). A proteomic characterization shows differences in the milk fat globule membrane of buffalo and bovine milk. Food Bioscience, 19, 7–16.

    Article  CAS  Google Scholar 

  • Noh, S. K., & Koo, S. I. (2004). Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. The Journal of Nutrition, 134, 2611–2616.

    Article  CAS  PubMed  Google Scholar 

  • Nyberg, L., Duan, R. D., & Nilsson, A. (2000). A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. The Journal of Nutritional Biochemistry, 11, 244–249.

    Article  CAS  PubMed  Google Scholar 

  • O’Mahoney, J. A., & Fox, P. F. (2014). Milk an overview. In M. Boland, H. Singh, & A. Thompson (Eds.), Milk proteins: From expression to food (2nd ed., pp. 19–73). San Diego, CA: Elsevier.

    Google Scholar 

  • Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., & Yamashiro, Y. (2003). Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatric Research, 53, 589–593.

    Article  CAS  PubMed  Google Scholar 

  • Parodi, P. W. (2003). Anti-cancer agents in milkfat. Australian Journal of Dairy Technology, 58, 114–118.

    CAS  Google Scholar 

  • Pepeu, G., Pepeu, I. M., & Amanducci, I. (1996). A review of phosphatidylserine pharmacological and clinical effects. I. Phosphatidylserine a drug for the ageing brain? Pharmaceutical Research, 33, 73–80.

    Article  CAS  Google Scholar 

  • Phan, T. T. Q., Asaduzzaman, M., Le, T. T., Fredrick, E., Van der Meeren, P., & Dewettinck, K. (2013). Composition and emulsifying properties of a milk fat globule membrane enriched material. International Dairy Journal, 29, 99–106.

    Article  CAS  Google Scholar 

  • Pimentel, L., Gomes, A., Pintado, M., & Rodríguez-Alcalá, L. M. (2016). Isolation and analysis of phospholipids in dairy foods. Journal of Analytical Methods in Chemistry, 2016, 9827369.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poppitt, S. D., McGregor, R. A., Wiessing, K. R., Goyal, V. K., Chitkara, A. J., Gupta, S., et al. (2014). Bovine complex milk lipid containing gangliosides for prevention of rotavirus infection and diarrhoea in northern Indian infants. Journal of Pediatric Gastroenterology and Nutrition, 56, 167–171.

    Article  CAS  Google Scholar 

  • Reinhardt, T. A., & Lippolis, J. D. (2006). Bovine milk fat globule membrane proteome. The Journal of Dairy Research, 73, 406–416.

    Article  CAS  PubMed  Google Scholar 

  • Restuccia, D., Spizzirri, G., Puoci, F., Cirillo, G., Vinci, G., & Picci, N. (2011). Determination of phospholipids in food samples. Food Review International, 28, 1–46.

    Article  CAS  Google Scholar 

  • Riccio, P. (2004). The proteins of the milk fat globule membrane in the balance. Trends in Food Science and Technology, 15, 458–461.

    Article  CAS  Google Scholar 

  • Robenek, H., Hofnagel, O., Buers, I., Lorkowski, S., Schnoor, M., Robenek, M. J., et al (2006). Butyrophilin controls milk fat globule secretion. Proceedings of the National Academy of Sciences of the United States of America, 103, 10385–10390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Alcalá, L. M., & Fontech, J. (2010). Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. Journal of Chromatography. A, 1217, 3063–3066.

    Article  CAS  Google Scholar 

  • Roesch, R. R., Rincon, A., & Corredig, M. (2004). Emulsifying properties of fractions prepared form commercial buttermilk by microfiltration. Journal of Dairy Science, 87, 4080–4087.

    Article  CAS  PubMed  Google Scholar 

  • Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2006). Microfiltration of butter serum upon casein micelle destabilisation. Journal of Dairy Science, 89, 1915–1925.

    Article  CAS  PubMed  Google Scholar 

  • Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2007). Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. Journal of Dairy Science, 90, 1662–1673.

    Article  CAS  PubMed  Google Scholar 

  • Rombaut, R., Dewettick, K., & van Camp, J. (2007). Phospho- and sphingolipid content of selected dairy products as determined by HPLC coupled to an evaporative light scattering detector (HPLC-ELSD). Journal of Food Composition and Analysis, 20, 308–312.

    Article  CAS  Google Scholar 

  • Rombaut, R., & Dewettinck, K. (2006). Properties, analysis and purification of milk polar lipids. International Dairy Journal, 16, 1362–1373.

    Article  CAS  Google Scholar 

  • Rombaut, R., van Camp, J., & Dewettick, K. (2005). Analysis of phosphor- and sphingolipids on dairy products by a new HPLC method. Journal of Dairy Science, 88, 482–488.

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva, S., & Buchheim, W. (1997). Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchwirtschaftliche Forschungsberichte, 49, 47–68.

    CAS  Google Scholar 

  • Sánchez-Juanes, F., Alonso, J. M., Zancada, L., & Hueso, P. (2009). Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. International Dairy Journal, 19, 237–278.

    Article  CAS  Google Scholar 

  • Singh, H. (2006). The milk fat globule membrane-A biophysical system for food applications. Current Opinion in Colloid & Interface Science, 11, 154–163.

    Article  CAS  Google Scholar 

  • Singh, H., & Gallier, S. (2017). Nature’s complex emulsion: The fat globules of milk. Food Hydrocolloids, 68, 81–89.

    Article  CAS  Google Scholar 

  • Smoczyński, M. (2017). Role of phospholipid flux during milk secretion in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 22, 117–129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spence, A. J., Jiménez-Flores, R., Qian, M., & Goddik, L. (2009). Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction. Journal of Dairy Science, 92, 2373–2381.

    Article  CAS  PubMed  Google Scholar 

  • Spitsberg, V. L., & Gorewit, R. C. (2002). Isolation, purification and characterization of fatty-acid-binding protein form milk fat globule membrane. Effect of bovine growth hormone treatment. Pakistan Journal of Nutrition, 1, 43–48.

    Article  Google Scholar 

  • Sprong, C., Hulstein, M. F. E., & van der Meer, R. (2001). Bactericidal activities of milk lipids. Antimicrobial Agents and Chemotherapy, 45, 1298–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surel, O., & Flamelart, M. H. (1995). Ability of ceramic membranes to reject lipids of dairy products. Australian Journal of Dairy Technology, 88, 2289–2294.

    Google Scholar 

  • Thompson, A. K., & Singh, H. (2006). Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. Journal of Dairy Science, 89, 410–419.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Domellöf, E., Hernell, O., Lönnerdal, B., & Domellöf, M. (2014). Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomised controlled trial. The American Journal of Clinical Nutrition, 99, 860–868.

    Article  CAS  PubMed  Google Scholar 

  • Timby, N., Hernell, O., Vaarala, O., Melin, M., Lönnerdal, B., & Domellöf, M. (2015). Infections in infants fed formula supplemented with bovine milk globule membranes. Journal of Pediatric Gastroenterology and Nutrition, 60, 348–389.

    Article  CAS  Google Scholar 

  • Tran Le, T., El-Bakry, M., Neirynck, N., Bogus, M., Hoa, H. D., & Van der Meeren. P. (2007). Hydrophilic lecithins protect milk proteins against heat induced aggregation. Colloids and Surfaces. B, Biointerfaces, 60, 167–173.

    Google Scholar 

  • Van Meer, G., & Lisman, Q. (2002). Sphingolipid transport: Rafts and translocators. The Journal of Biological Chemistry, 277, 25855–25858.

    Article  PubMed  CAS  Google Scholar 

  • Vanderghem, C., Francis, F., Danthine, S., Deroanne, C., Paquot, M., De Pauw, E., & Blecker, C. (2011). Study of the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins. International Dairy Journal, 21, 312–318.

    Article  CAS  Google Scholar 

  • Verardo, V., Gómez-Caravaca, A. M., Arráez-Román, D., & Hettinga, K. (2017). Recent advances in phospholipids from colostrum, milk and dairy by-products. International Journal of Molecular Sciences, 18, 173–196.

    Article  PubMed Central  CAS  Google Scholar 

  • Vorbach, C., Scriven, A., & Capecchi, M. R. (2002). The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes & Development, 16, 3223–3235.

    Article  CAS  Google Scholar 

  • Walstra, P. (1985). Some comments on the isolation of fat globule membrane material. The Journal of Dairy Research, 52, 309–312.

    Article  CAS  Google Scholar 

  • Walstra, P., & Jenness, R. (1984). Dairy chemistry and physics. New York, NY: Wiley.

    Google Scholar 

  • Wat, E., Tandy, S., Kaper, E., Kamili, A., Chung R. W., Brown A., et al. (2009). Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis, 205, 144–150.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, S., Takahashi, T., Tanaka, L., Haruta-Ono, Y., Shiota, M., Hosokawa, M., et al. (2011). The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-Ay). Journal of Functional Foods, 3, 313–320.

    Article  CAS  Google Scholar 

  • Wu, C. C., Howell, K. E., Neville, M. C., Yates, J. R. 3rd, & McManaman. J. L. (2000). Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis, 21, 3470–3482.

    Google Scholar 

  • Zou, X., Guo, Z., Jin, Q., Huang, J., Cheong, L., Xu X., et al. (2015). Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chemistry, 185, 362–370.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barry, K.M., Dinan, T.G., Kelly, P.M. (2020). Preparation and Applications of Milk Polar Lipids/MFGM. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_4

Download citation

Publish with us

Policies and ethics