Skip to main content

Role of Differentiated-Size Milk Fat Globules on the Physical Functionality of Dairy-Fat Structured Products

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

Milk fat globules (MFGs) size is known to be a pivotal functionality and processing factor in various fat-structured dairy products such as milks, butter, cheese, ice-cream, and yoghurt. The average size of milk fat globules (MFGs) is about 4 μm with a wide size distribution from 0.1 to 10 μm. This chapter discusses the importance of MFG size in processing of dairy-fat structured products with the view of potential applications to the production of innovative dairy ingredients and products. It provides a comprehensive overview of size-dependent variations in physical and chemical properties as well as methodologies to alter the size of both native and emulsified MFGs. Recent studies on utilisation of size-differentiated MFG in dairy-fat structured products is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeni, F., Degano, L., Calza, F., Giangiacomo, R., & Pirlo, G. (2005). Milk quality and automatic milking: Fat globule size, natural creaming, and lipolysis. Journal of Dairy Science, 88(10), 3519–3529.

    Article  CAS  PubMed  Google Scholar 

  • Aernoutsa, B., Beersa, R. V., Wattéa, R., Huybrechtsa, T., Jordensb, J., Vermeulenc, D., et al. (2015). Effect of ultrasonic homogenization on the Vis/NIR bulk optical properties of milk. Colloids and Surfaces B: Biointerfaces, 126, 510–519.

    Article  CAS  Google Scholar 

  • Ashworth, U. S. (1951). Turbidity as a means for determining the efficiency of homogenization. Journal of Dairy Science, 34(4), 317–320.

    Article  CAS  Google Scholar 

  • Avramis, C. A., Wang, H., McBride, B. W., Wright, T. C., & Hill, A. R. (2003). Physical and processing properties of milk, butter, and Cheddar cheese from cows fed supplemental fish meal. Journal of Dairy Science, 86(8), 2568–2576.

    Article  CAS  PubMed  Google Scholar 

  • Banach, J. K., Żywica, R., & Kiełczewska, K. (2008). Effect of homogenization on milk conductance properties. Polish Journal of Food and Nutrition Sciences, 58(1), 107–111.

    Google Scholar 

  • Banks, J. M., Clapperton, J. L., Muir, D. D., & Girdler, A. K. (1986). The influence of diet and breed of cow on the efficiency of conversion of milk constituents to curd in cheese manufacture. Journal of the Science of Food and Agriculture, 37(5), 461–468.

    Article  CAS  Google Scholar 

  • Bauman, D. E., Corl, B. A., & Peterson, G. P. (2003). The biology of conjugated linoleic acids in ruminants. Champaign, IL: AOCS Press.

    Google Scholar 

  • Belury, M. A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22, 505–531.

    Article  CAS  PubMed  Google Scholar 

  • Bermudez-Aguirre, D., Mawson, R., & Barbosa-Canovas, G. V. (2008). Microstructure of fat globules in whole milk after thermosonication treatment. Journal of Food Science, 73(7), E325–E332.

    Article  CAS  PubMed  Google Scholar 

  • Borcherding, K., Hoffmann, W., Lorenzen, P. C., & Schrader, K. (2008). Effect of milk homogenisation and foaming temperature on properties and microstructure of foams from pasteurised whole milk. LWT-Food Science and Technology, 41(10), 2036–2043.

    Article  CAS  Google Scholar 

  • Briard, V., Leconte, N., Michel, F., & Michalski, M. C. (2003). The fatty acid composition of small and large naturally occurring milk fat globules. European Journal of Lipid Science and Technology, 105(11), 677–682.

    Article  CAS  Google Scholar 

  • Briard-Bion, V., Juaneda, P., Richoux, R., Guichard, E., & Lopez, C. (2008). trans-C18: 1 isomers in cheeses enriched in unsaturated fatty acids and manufactured with different milk fat globule sizes. Journal of Agricultural and Food Chemistry, 56(20), 9374–9382.

    Article  CAS  PubMed  Google Scholar 

  • Bucci, A. J., Van Hekken, D. L., Tunick, M. H., Renye, J. A., & Tomasula, P. M. (2018). The effects of microfluidization on the physical, microbial, chemical, and coagulation properties of milk. Journal of Dairy Science, 101, 6990–7001.

    Article  CAS  PubMed  Google Scholar 

  • Bugeat, S., Briard-Bion, V., Perez, J., Pradel, P., Martin, B., Lesieur, S., et al. (2011). Enrichment in unsaturated fatty acids and emulsion droplet size affect the crystallization behaviour of milk triacylglycerols upon storage at 4 degrees C. Food Research International, 44(5), 1314–1330.

    Article  CAS  Google Scholar 

  • Carroll, S. M., DePeters, E. J., Taylor, S. J., Rosenberg, M., Perez-Monti, H., & Capps, V. (2006). Milk composition of Holstein, Jersey, and Brown Swiss cows in response to increasing levels of dietary fat. Animal Feed Science and Technology, 131(3-4), 451–473.

    Article  CAS  Google Scholar 

  • Chandrapala, J., Ong, L., Zisu, B., Gras, S. L., Ashokkumar, M., & Kentish, S. E. (2016). The effect of sonication and high pressure homogenisation on the properties of pure cream. Innovative Food Science & Emerging Technologies, 33, 298–307.

    Article  CAS  Google Scholar 

  • Cho, Y. H., Lucey, J. A., & Singh, H. (1999). Rheological properties of acid milk gels as affected by the nature of the fat globule surface material and heat treatment of milk. International Dairy Journal, 9(8), 537–545.

    Article  CAS  Google Scholar 

  • Ciron, C. I. E., Gee, V. L., Kelly, A. L., & Auty, M. A. E. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20(5), 314–320.

    Article  Google Scholar 

  • Cornell, D. G., & Pallansch, M. J. (1966). Counting and sizing fat globules electronically. Journal of Dairy Science, 49(11), 1371.

    Article  CAS  Google Scholar 

  • Couvreur, S., Hurtaud, C., Marnet, P. G., Faverdin, P., & Peyraud, J. L. (2007). Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. Journal of Dairy Science, 90(1), 392–403.

    Article  CAS  PubMed  Google Scholar 

  • Dalgleish, D. G., Tosh, S. M., & West, S. (1996). Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a Microfluidizer. Netherlands Milk and Dairy Journal, 50(2), 135–148.

    Google Scholar 

  • Dhungana, P., Truong, T., Bansal, N., & Bhandari, B. (2019). Thermal and UHT stability of native, homogenized and recombined creams with different average fat globule sizes. Food Research International, 123, 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Dhungana, P., Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2017). Size-based fractionation of native milk fat globules by two-stage centrifugal separation. Innovative Food Science & Emerging Technologies, 41, 235–243.

    Article  CAS  Google Scholar 

  • Eden, J., Dejmek, P., Lofgren, R., Paulsson, M., & Glantz, M. (2016). Native milk fat globule size and its influence on whipping properties. International Dairy Journal, 61, 176–181.

    Article  CAS  Google Scholar 

  • Ertugay, M. F., Sengul, M., & Sengul, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary & Animal Sciences, 28(2), 303–308.

    Google Scholar 

  • Everett, D. W., & Olson, N. F. (2000). Dynamic rheology of renneted milk gels containing fat globules stabilized with different surfactants. Journal of Dairy Science, 83(6), 1203–1209.

    Article  CAS  PubMed  Google Scholar 

  • Fauquant, C., Briard, V., Leconte, N., & Michalski, M. C. (2005). Differently sized native milk fat globules separated by microfiltration: Fatty acid composition of the milk fat globule membrane and triglyceride core. European Journal of Lipid Science and Technology, 107(2), 80–86.

    Article  CAS  Google Scholar 

  • Fibrianto, K. (2013). Contribution of anhydrous milk fat to oral processing and sensory perception of liquid milks. PhD Thesis, The University of Queensland.

    Google Scholar 

  • Fox, P. F., & McSweeney, P. L. (1998). Dairy chemistry and biochemistry. London: Blackie Academic & Professional.

    Google Scholar 

  • Goff, H. D. (1997). Instability and partial coalescence in whippable dairy emulsions. Journal of Dairy Science, 80(10), 2620–2630.

    Article  CAS  Google Scholar 

  • Goudedranche, H., Fauquant, J., & Maubois, J. L. (2000). Fractionation of globular milk fat by membrane microfiltration. Le Lait, 80(1), 93–98.

    Article  CAS  Google Scholar 

  • Goulden, J. D. S. (1958). Some factors affecting turbimetric methods for the determination of fat in milk. Journal of Dairy Research, 25(2), 228–235.

    Article  CAS  Google Scholar 

  • Green, M. L., Marshall, R. J., & Glover, F. A. (1983). Influence of homogenization of concentrated milks on the structure and properties of rennet curds. Journal of Dairy Research, 50(3), 341–348.

    Article  CAS  Google Scholar 

  • Gresti, J., Bugaut, M., Maniongui, C., & Bezard, J. (1993). Composition of molecular-species of triacylglycerols in bovine-milk fat. Journal of Dairy Science, 76(7), 1850–1869.

    Article  CAS  PubMed  Google Scholar 

  • Hardham, J. F., Imison, B. W., & French, H. M. (2000). Effect of homogenisation and microfluidisation on the extent of fat separation during storage of UHT milk. Australian Journal of Dairy Technology, 55(1), 16–22.

    CAS  Google Scholar 

  • Hayes, M. G., Fox, P. F., & Kelly, A. L. (2005). Potential applications of high pressure homogenisation in processing of liquid milk. Journal of Dairy Research, 72(1), 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, M. G., & Kelly, A. L. (2003). High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. Journal of Dairy Research, 70(3), 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84(2-3), 245–258.

    Article  CAS  PubMed  Google Scholar 

  • Huppertz, T., & Kelly, A. L. (2006). Physical chemistry of milk fat globules. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry volume 2: Lipids. New York: Springer.

    Google Scholar 

  • Hurtaud, C., Faucon, F., Couvreur, S., & Peyraud, J. L. (2010). Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. Journal of Dairy Science, 93(4), 1429–1443.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, H., Truong, T., Bansal, N., & Bhandari, B. (2017). The effect of manipulating fat globule size on the stability and rheological properties of dairy creams. Food Biophysics, 12(1), 1–10.

    Article  Google Scholar 

  • Jana, A. H., & Upadhyay, K. G. (1992). Homogenisation of milk for cheesemaking. Australian Journal of Dairy Technology, 47, 72–79.

    Google Scholar 

  • Ji, Y. R., Lee, S. K., & Anema, S. G. (2011). Effect of heat treatments and homogenisation pressure on the acid gelation properties of recombined whole milk. Food Chemistry, 129(2), 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Juliano, P., Kutter, A., Cheng, L. J., Swiergon, P., Mawson, R., & Augustin, M. A. (2011). Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrasonics Sonochemistry, 18(5), 963–973.

    Article  CAS  PubMed  Google Scholar 

  • Kaylegian, K. E., & Lindsay, R. C. (1995). Handbook of milkfat fractionation technology and applications. Champaign: AOCS Press.

    Google Scholar 

  • Kietczewska, K., Kruk, A., Czerniewicz, M., Warminska, M., & Haponiuk, E. (2003). The effect of high-pressure homogenization on changes in milk colloidal and emulsifying systems. Polish Journal of Food and Nutrition Sciences, 12(1), 43–46.

    Google Scholar 

  • Konokhova, A. I., Rodionov, A. A., Gilev, K. V., Mikhaelis, I. M., Strokotov, D. I., Moskalensky, A. E., et al. (2014). Enhanced characterisation of milk fat globules by their size, shape and refractive index with scanning flow cytometry. International Dairy Journal, 39(2), 316–323.

    Article  CAS  Google Scholar 

  • Koxholt, M. M. R., Eisenmann, B., & Hinrichs, J. (2001). Effect of the fat globule sizes on the meltdown of ice cream. Journal of Dairy Science, 84(1), 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Le Calve, B., Saint-Leger, C., Babas, R., Gelin, J. L., Parker, A., Erni, P., et al. (2015). Fat perception: How sensitive are we? J Texture Stud, 46(3), 200–211.

    Article  Google Scholar 

  • Lee, S.-H., Lefèvre, T., Subirade, M., & Paquin, P. (2009). Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chemistry, 113(1), 191–195.

    Article  CAS  Google Scholar 

  • Lemay, A., Paquin, P., & Lacroix, C. (1994). Influence of microfluidization of milk on cheddar cheese composition, color, texture, and yield. Journal of Dairy Science, 77(10), 2870–2879.

    Article  Google Scholar 

  • Leong, T., Johansson, L., Juliano, P., Mawson, R., McArthur, S., & Manasseh, R. (2014). Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrasonics Sonochemistry, 21(4), 1289–1298.

    Article  CAS  PubMed  Google Scholar 

  • Leong, T., Johansson, L., Mawson, R., McArthur, S. L., Manasseh, R., & Juliano, P. (2016). Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel. Ultrasonics Sonochemistry, 28, 118–129.

    Article  CAS  PubMed  Google Scholar 

  • Leong, T., Juliano, P., Johansson, L., Mawson, R., McArthur, S. L., & Manasseh, R. (2014). Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrasonics Sonochemistry, 21(6), 2092–2098.

    Article  CAS  PubMed  Google Scholar 

  • Logan, A., Auldist, M., Greenwood, J., & Day, L. (2014). Natural variation of bovine milk fat globule size within a herd. Journal of Dairy Science, 97(7), 4072–4082.

    Article  CAS  PubMed  Google Scholar 

  • Logan, A., Day, L., Pin, A., Auldist, M., Leis, A., Puvanenthiran, A., et al. (2014). Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food and Bioprocess Technology, 7(3), 3175–3185.

    Article  CAS  Google Scholar 

  • Logan, A., Leis, A., Day, L., Øiseth, S. K., Puvanenthiran, A., & Augustin, M. A. (2015). Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. International Dairy Journal, 46, 71–77.

    Article  CAS  Google Scholar 

  • Long, Z., Zhao, M. M., Zhao, Q. Z., Yang, B., & Liu, L. Y. (2012). Effect of homogenisation and storage time on surface and rheology properties of whipping cream. Food Chemistry, 131(3), 748–753.

    Article  CAS  Google Scholar 

  • Lopez, C. (2005). Focus on the supramolecular structure of milk fat in dairy products. Reproduction Nutrition Development, 45(4), 497–511.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C. (2011). Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science, 16(5), 391–404.

    Article  CAS  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., Bernadou, S., Keller, G., & Ollivon, M. (2002). Thermal and structural behavior of milk fat - 3. Influence of cooling rate and droplet size on cream crystallization. Journal of Colloid and Interface Science, 254(1), 64–78.

    CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Menard, O., Beaucher, E., Rousseau, F., Fauquant, J., et al. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125(2), 355–368.

    Article  CAS  Google Scholar 

  • Lopez, C., Briard-Bion, V., Menard, O., Rousseau, F., Pradel, P., & Besle, J. M. (2008). Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. Journal of Agricultural and Food Chemistry, 56(13), 5226–5236.

    Article  CAS  PubMed  Google Scholar 

  • Lucey, J. A., Johnson, M. E., & Horne, D. S. (2003). Invited review: Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86(9), 2725–2743.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y., & Barbano, D. M. (2000). Gravity separation of raw bovine milk: Fat globule size distribution and fat content of milk fractions. Journal of Dairy Science, 83(8), 1719–1727.

    Article  CAS  PubMed  Google Scholar 

  • Mabrook, M. F., & Petty, M. C. (2003). Effect of composition on the electrical conductance of milk. Journal of Food Engineering, 60(3), 321–325.

    Article  Google Scholar 

  • MacGibbon, A. K. H., & Taylor, M. W. (2006). Composition and structure of bovine milk lipids. In P. F. Fox & P. L. McSweeney (Eds.), Advanced dairy chemistry 2: Lipids. New York: Springer.

    Google Scholar 

  • Martini, M., Altomonte, I., Pesi, R., Tozzi, M. G., & Salari, F. (2013). Fat globule membranes in ewes’ milk: The main enzyme activities during lactation. International Dairy Journal, 28(1), 36–39.

    Article  CAS  Google Scholar 

  • Martini, M., Cecchi, F., & Scolozzi, C. (2006). Relationship between fat globule size and chemical and fatty acid composition of cow’s milk in mid lactation. Italian Journal of Animal Science, 5(4), 349–358.

    Google Scholar 

  • Martini, M., Cecchi, F., Scolozzi, C., Leotta, R., & Verita, P. (2003). Milk fat globules in different dairy cattle breeds part I: Morphometric analysis. Italian Journal of Animal Science, 2, 272–274.

    Google Scholar 

  • Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635–R666.

    CAS  Google Scholar 

  • Mattes, R. D. (2009). Is there a fatty acid taste? Annual Review of Nutrition, 29, 305–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCrae, C. H., & Lepoetre, A. (1996). Characterization of dairy emulsions by forward lobe laser light scattering - Application to milk and cream. International Dairy Journal, 6(3), 247–256.

    Article  Google Scholar 

  • Mellema, M., Heesakkers, J. W. M., van Opheusden, J. H. J., & van Vliet, T. (2000). Structure and scaling behavior of aging rennet-induced casein gels examined by confocal microscopy and permeametry. Langmuir, 16(17), 6847–6854.

    Article  CAS  Google Scholar 

  • Mesilati-Stahy, R., & Argov-Argaman, N. (2014). The relationship between size and lipid composition of the bovine milk fat globule is modulated by lactation stage. Food Chemistry, 145, 562–570.

    Article  CAS  PubMed  Google Scholar 

  • Mesilati-Stahy, R., Mida, K., & Argov-Argaman, N. (2011). Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. Journal of Agricultural and Food Chemistry, 59(13), 7427–7435.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C., Briard, V., & Juaneda, P. (2005). CLA profile in native fat globules of different sizes selected from raw milk. International Dairy Journal, 15(11), 1089–1094.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Briard, V., & Michel, F. (2001). Optical parameters of milk fat globules for laser light scattering measurements. Le Lait, 81(6), 787–796.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Camier, B., Briard, V., Leconte, N., Gassi, J. Y., Goudedranche, H., et al. (2004). The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait, 84(4), 343–358.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Camier, B., Gassi, J. Y., Briard-Bion, V., Leconte, N., Famelart, M. H., et al. (2007). Functionality of smaller vs control native milkfat globules in emmental cheeses manufactured with adapted technologies. Food Research International, 40(1), 191–202.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C., Gassi, J. Y., Famelart, M. H., Leconte, N., Camier, B., Michel, F., et al. (2003). The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait, 83(2), 131–143.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Leconte, N., Briard-Bion, V., Fauquant, J., Maubois, J. L., & Goudedranche, H. (2006). Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. Journal of Dairy Science, 89(10), 3778–3790.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C., Michel, F., Sainmont, D., & Briard, V. (2002). Apparent zeta-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids and Surfaces B: Biointerfaces, 23(1), 23–30.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Ollivon, M., Briard, V., Leconte, N., & Lopez, C. (2004). Native fat globules of different sizes selected from raw milk: Thermal and structural behavior. Chemistry and Physics of Lipids, 132(2), 247–261.

    Article  CAS  PubMed  Google Scholar 

  • Miles, C. A., Shore, D., & Langley, K. R. (1990). Attenuation of ultrasound in milks and Creams. Ultrasonics, 28(6), 394–400.

    Article  Google Scholar 

  • Mulder, H., & Walstra, P. (1974). The fat dispersion. In H. Mulder & P. Walstra (Eds.), The milk fat globule. Emulsion science as applied to milk products and comparable foods (pp. 54–66). Wageningen: The Netherlands Center for Agricultural Publishing and Documentation.

    Google Scholar 

  • O’Mahony, J. A., Auty, M. A. E., & McSweeney, P. L. H. (2005). The manufacture of miniature Cheddar-type cheeses from milks with different fat globule size distributions. Journal of Dairy Research, 72(3), 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Olson, D. W., White, C. H., & Richter, R. L. (2004). Effect of pressure and fat content on particle sizes in microfluidized milk. Journal of Dairy Science, 87(10), 3217–3223.

    Article  CAS  PubMed  Google Scholar 

  • Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2010). The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy. Journal of Food Science, 75(3), E135–E145.

    Article  CAS  PubMed  Google Scholar 

  • Pal, R. (1996). Effect of droplet size on the rheology of emulsions. AICHE J, 42(11), 3181–3190.

    Article  CAS  Google Scholar 

  • Panchal, B. R., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2017). Effect of fat globule size on the churnability of dairy cream. Food Research International, 99(Pt 1), 229–238.

    Article  CAS  PubMed  Google Scholar 

  • Precht, D. (1988). In N. Garti & K. Sato (Eds.), Fat crystal structure in cream and butter. Crystallllization and polymorphism of fats and fatty acids (pp. 305–361). New York: Marcel Dekker.

    Google Scholar 

  • Richardson, N. J., & Booth, D. A. (1993). Effect of homogenization and fat content on oral perception of low and high viscosity model creams. Journal of Sensory Studies, 8, 133–143.

    Article  Google Scholar 

  • Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chemistry, 114(3), 905–911.

    Article  CAS  Google Scholar 

  • Robin, O., & Paquin, P. (1991). Evaluation of the particle-size of fat globules in a milk model emulsion by photon-correlation spectroscopy. Journal of Dairy Science, 74(8), 2440–2447.

    Article  Google Scholar 

  • Rodarte, D., Zamora, A., Trujillo, A.-J., & Juan, B. (2018). Effect of ultra-high pressure homogenization on cream: Shelf life and physicochemical characteristics. LWT-Food Science and Technology, 92, 108–115.

    Article  CAS  Google Scholar 

  • Rowney, M. K., Hickey, M. W., Roupas, P., & Everett, D. W. (2003). The effect of homogenization and milk fat fractions on the functionality of Mozzarella cheese. Journal of Dairy Science, 86(3), 712–718.

    Article  CAS  PubMed  Google Scholar 

  • Rudan, M. A., Barbano, D. M., Gu, M. R., & Kindstedt, P. S. (1998). Effect of the modification of fat particle size by homogenization on composition, proteolysis, functionality, and appearance of reduced fat Mozzarella cheese. Journal of Dairy Science, 81(8), 2065–2076.

    Article  CAS  Google Scholar 

  • Schenkel, P., Samudrala, R., & Hinrichs, J. (2013). Thermo-physical properties of semi-hard cheese made with different fat fractions: Influence of melting point and fat globule size. International Dairy Journal, 30(2), 79–87.

    Article  CAS  Google Scholar 

  • Schoumacker, R., Martin, C., Thomas-Danguin, T., Guichard, E., Le Quéré, J. L., & Labouré, H. (2017). Fat perception in cottage cheese: The contribution of aroma and tasting temperature. Food Quality and Preference, 56, 241–246.

    Article  Google Scholar 

  • Serra, M., Trujillo, A. J., Quevedo, J. M., Guamis, B., & Ferragut, V. (2007). Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. International Dairy Journal, 17(7), 782–790.

    Article  CAS  Google Scholar 

  • St-Gelais, D., Passey, C. A., Hache, S., & Roy, P. (1997). Production of low-fat cheddar cheese from low and high mineral retentate powders and different fractions of milkfat globules. International Dairy Journal, 7(11), 733–741.

    Article  CAS  Google Scholar 

  • TetraPak. (2009). Centrifugal separators and milk fat standardisation. In Dairy processing handbook (pp. 91–113). Lund: TetraPak Processing Systems AB.

    Google Scholar 

  • Thiebaud, M., Dumay, E., Picart, L., Guiraud, J. P., & Cheftel, J. C. (2003). High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. International Dairy Journal, 13(6), 427–439.

    Article  CAS  Google Scholar 

  • Timmen, H., & Patton, S. (1988). Milk-fat globules - Fatty-acid composition, size and invivo regulation of fat liquidity. Lipids, 23(7), 685–689.

    Article  CAS  PubMed  Google Scholar 

  • Truong, T., Bansal, N., & Bhandari, B. (2014). Effect of emulsion droplet size on foaming properties of milk fat emulsions. Food and Bioprocess Technology, 7(12), 3416–3428.

    Article  CAS  Google Scholar 

  • Truong, T., Bansal, N., Sharma, R., Palmer, M., & Bhandari, B. (2014). Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chemistry, 145, 725–735.

    Article  CAS  PubMed  Google Scholar 

  • Truong, T., Morgan, G. P., Bansal, N., Palmer, M., & Bhandari, B. (2015). Crystal structures and morphologies of fractionated milk fat in nanoemulsions. Food Chemistry, 171, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Valivullah, H. M., Bevan, D. R., Peat, A., & Keenan, T. W. (1988). Milk lipid globules - control of their size distribution. Proc Natl Acad Sci U S A, 85(23), 8775–8779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villamiel, M., & de Jong, P. (2000). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 48(7), 3068–3068.

    Article  CAS  PubMed  Google Scholar 

  • Wade, T., & Beattie, J. K. (1997). Electroacoustic determination of size and zeta potential of fat globules in milk and cream emulsions. Colloids and Surf B:Biointerfaces, 10(2), 73–85.

    Article  CAS  Google Scholar 

  • Walstra, P. (1967). On the crystallization habit in fat globules. Netherlands Milk and Dairy Journal, 21(3/4), 166–191.

    CAS  Google Scholar 

  • Walstra, P. (1995). Physical chemistry of milk fat globules. In P. F. Fox (Ed.), Advanced dairy chemistry vol. 2: Lipids (pp. 131–178). London: Chapman & Hall.

    Google Scholar 

  • Walstra, P., Geurts, T. J., Noomen, A., Jellama, A., & Van Boekel, M. A. J. S. (1999). Dairy technology: Principles of milk properties and processes. New York: Marcel Dekker, Inc..

    Book  Google Scholar 

  • Walstra, P., & Oortwijn, H. (1969). Estimating globule-size distribution of oil-in-water emulsions by coulter counter. J Colloid Interface Sci, 29(3), 424.

    Article  CAS  Google Scholar 

  • Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2005). Dairy Science and Technology. CRC: Press.

    Book  Google Scholar 

  • Whiteley, A. J., & Muir, D. D. (1996). Heat stability of homogenised concentrated milk. 1. Comparison of microfluidiser with a valve homogeniser. Milchwissenschaft-Milk Science International, 51(6), 320–323.

    CAS  Google Scholar 

  • Wiking, L., Bjorck, L., & Nielsen, J. H. (2003). Influence of feed composition on stability of fat globules during pumping of raw milk. International Dairy Journal, 13(10), 797–803.

    Article  CAS  Google Scholar 

  • Wiking, L., Nielsen, J. H., Bavius, A. K., Edvardsson, A., & Svennersten-Sjaunja, K. (2006). Impact of milking frequencies on the level of free fatty acids in milk, fat globule size, and fatty acid composition. Journal of Dairy Science, 89(3), 1004–1009.

    Article  CAS  PubMed  Google Scholar 

  • Wiking, L., Stagsted, J., Lennart, B., & Nielsen, J. H. (2004). Milk fat globule size is affected by fat production in dairy cows. International Dairy Journal, 14(10), 909–913.

    Article  CAS  Google Scholar 

  • Wright, A. J., & Marangoni, A. G. (2002). The effect of minor components on milkfat crystallization, microstructure, and rheological properties. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (p. 589). New York: Marcel Dekker.

    Google Scholar 

  • Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported under Australian Research Council’s Industrial Transformation Research Hub (ITRH) funding scheme (IH120100005). The ARC Dairy Innovation Hub is a collaboration between the University of Melbourne, the University of Queensland and Dairy Innovation Australia Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhesh Bhandari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Truong, T., Bhandari, B. (2020). Role of Differentiated-Size Milk Fat Globules on the Physical Functionality of Dairy-Fat Structured Products. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_14

Download citation

Publish with us

Policies and ethics