Skip to main content

An Enhanced Louvain Based Image Segmentation Approach Using Color Properties and Histogram of Oriented Gradients

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019)

Abstract

Segmentation techniques based on community detection algorithms generally have an over-segmentation problem. This paper then propose a new algorithm to agglomerate near homogeneous regions based on texture and color features. More specifically, our strategy relies on the use of a community detection on graphs algorithm (used as a clustering approach) where the over-segmentation problem is managed by merging similar regions in which the similarity is computed with Histogram of Oriented Gradients (named as HOG) and Mean and Standard deviation of color properties as features. In order to assess the performances of our proposed algorithm, we used three public datasets (Berkeley Segmentation Dataset (BSDS300 and BSDS500) and the Microsoft Research Cambridge Object Recognition Image Database (MSRC)). Our experiments show that the proposed method produces sizable segmentation and outperforms almost all the other methods from the literature, in terms of accuracy and comparative metrics scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abin, A.A., Mahdisoltani, F., Beigy, H.: A new image segmentation algorithm: a community detection approach. In: IICAI (2011)

    Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: an empirical evaluation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2294–2301, June 2009. https://doi.org/10.1109/CVPR.2009.5206707

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011). https://doi.org/10.1109/TPAMI.2010.161

    Article  Google Scholar 

  4. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)

    MathSciNet  MATH  Google Scholar 

  5. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  MATH  Google Scholar 

  6. Browet, A., Absil, P.-A., Van Dooren, P.: Community detection for hierarchical image segmentation. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 358–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21073-0_32

    Chapter  MATH  Google Scholar 

  7. Chen, Y.L., Lin, C.T., Fan, C.J., Hsieh, C.M., Wu, B.F.: Vision-based nighttime vehicle detection and range estimation for driver assistance. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 2988–2993, October 2008. https://doi.org/10.1109/ICSMC.2008.4811753

  8. Christoudias, C.M., Georgescu, B., Meer, P.: Synergism in low level vision. In: Object Recognition Supported by User Interaction for Service Robots, vol. 4, pp. 150–155, August 2002. https://doi.org/10.1109/ICPR.2002.1047421

  9. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 066111 (2005). https://doi.org/10.1103/PhysRevE.70.066111

    Article  Google Scholar 

  10. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002). https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  11. Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 1124–1131, June 2005. https://doi.org/10.1109/CVPR.2005.332

  12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893, June 2005. https://doi.org/10.1109/CVPR.2005.177

  13. Deng, Y., Manjunath, B.S.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001). https://doi.org/10.1109/34.946985

    Article  Google Scholar 

  14. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511761942

    Book  MATH  Google Scholar 

  15. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  16. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002. http://www.sciencedirect.com/science/article/pii/S0370157309002841

    Article  MathSciNet  Google Scholar 

  17. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799. https://www.pnas.org/content/99/12/7821

    Article  MathSciNet  MATH  Google Scholar 

  18. Junwei, L., Shaokai, L.: A novel image segmentation technology in intelligent traffic light control systems. In: 2013 3rd International Conference on Consumer Electronics, Communications and Networks. pp. 26–29, November 2013. https://doi.org/10.1109/CECNet.2013.6703263

  19. Khan, N., Sundaramoorthi, G.: Learned shape-tailored descriptors for segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 666–674, June 2018. https://doi.org/10.1109/CVPR.2018.00076

  20. Li, S., Wu, D.O.: Modularity-based image segmentation. IEEE Trans. Circuits Syst. Video Technol. 25(4), 570–581 (2015). https://doi.org/10.1109/TCSVT.2014.2360028

    Article  Google Scholar 

  21. Li, W.: Modularity segmentation. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013, Part II. LNCS, vol. 8227, pp. 100–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42042-9_13

    Chapter  Google Scholar 

  22. Linares, O.A.C., Botelho, G.M., Rodrigues, F.A., Neto, J.B.: Segmentation of large images based on super-pixels and community detection in graphs. CoRR abs/1612.03705 (2016), http://arxiv.org/abs/1612.03705

  23. Liu, D., Chen, T.: DISCOV: a framework for discovering objects in video. IEEE Trans. Multimedia 10(2), 200–208 (2008). https://doi.org/10.1109/TMM.2007.911781

    Article  Google Scholar 

  24. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  25. Meilă, M.: Comparing clusterings: an axiomatic view. In: In ICML 2005: Proceedings of the 22nd International Conference on Machine Learning, pp. 577–584. ACM Press (2005)

    Google Scholar 

  26. Mori, G.: Guiding model search using segmentation. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005) Volume 1, vol. 2, pp. 1417–1423, October 2005. https://doi.org/10.1109/ICCV.2005.112

  27. Mourchid, Y., El Hassouni, M., Cherifi, H.: An image segmentation algorithm based on community detection. COMPLEX NETWORKS 2016 2016. SCI, vol. 693, pp. 821–830. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50901-3_65

    Chapter  Google Scholar 

  28. Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)

    Book  Google Scholar 

  29. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  30. Newman, M.: Fast algorithm for detecting community structure in networks. Physical Review E 69, (2003). http://arxiv.org/abs/cond-mat/0309508

  31. Nguyen, T., Coustaty, M., Guillaume, J.: A new image segmentation approach based on the Louvain algorithm. In: 2018 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 1–6, September 2018. https://doi.org/10.1109/CBMI.2018.8516531

  32. Nguyen, T.-K., Coustaty, M., Guillaume, J.-L.: An efficient agglomerative algorithm cooperating with louvain method for implementing image segmentation. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 150–162. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_13

    Chapter  Google Scholar 

  33. Nguyen, T., Coustaty, M., Guillaume, J.: A combination of histogram of oriented gradients and color features to cooperate with louvain method based image segmentation. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 4: VISAPP, pp. 280–291. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007389302800291

  34. Pantofaru, C., Hebert, M.: A comparison of image segmentation algorithms. Technical report. CMU-RI-TR-05-40. Carnegie Mellon University, Pittsburgh, PA, September 2005

    Google Scholar 

  35. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 10–17, October 2003. https://doi.org/10.1109/ICCV.2003.1238308

  36. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_1

    Chapter  Google Scholar 

  37. Sumengen, B., Manjunath, B.S.: Multi-scale edge detection and image segmentation. In: 2005 13th European Signal Processing Conference, pp. 1–4, September 2005

    Google Scholar 

  38. Verdoja, F., Grangetto, M.: Fast Superpixel-Based Hierarchical Approach to Image Segmentation. In: Murino, V., Puppo, E. (eds.) ICIAP 2015, Part I. LNCS, vol. 9279, pp. 364–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_33

    Chapter  Google Scholar 

  39. Mourchid, Y., El Hassouni, M., Cherifi, H.: A new image segmentation approach using community detection algorithms. In: 15th International Conference on Intelligent Systems Design and Applications, Marrakesh, Marocco, December 2015

    Google Scholar 

  40. Mourchild, Y., El Hassouni, M., Cherifi, H.: Image segmentation based on community detection approach. Int. J. Comput. Inf. Syst. Ind. Manage. Appl. 8, 195–204 (2016)

    Google Scholar 

  41. Zhou, J.Y., Ong, E.P., Ko, C.C.: Video object segmentation and tracking for content-based video coding. In: 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No. 00TH8532), vol. 3, pp. 1555–1558 (2000). https://doi.org/10.1109/ICME.2000.871065

  42. Zohrizadeh, F., Kheirandishfard, M., Kamangar, F.: Image segmentation using sparse subset selection. CoRR abs/1804.02721 (2018). http://arxiv.org/abs/1804.02721

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Khoa Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, TK., Guillaume, JL., Coustaty, M. (2020). An Enhanced Louvain Based Image Segmentation Approach Using Color Properties and Histogram of Oriented Gradients. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics