Skip to main content

Role of Nutrients in Plant Growth and Development

  • Chapter
  • First Online:
Contaminants in Agriculture

Abstract

Nutrients are the essential elemental components of soil required for plant growth and architecture. Deficiency of these elements creates certain identifiable symptoms. Commonly, these elements are found in soil in the form of their respective salts. Depending on the basic requirement of plants, nutrients are divided into two categories: micronutrients and macronutrients. Soil and plant tissue analysis reveals certain facts about the presence of each element in plant and their permissible limit in soil. Optimum limit of each element is beneficial for plant growth as well as soil fertility. Adverse effects have been observed when concentration of these elements either increases or decreases beyond its permissible range in soil. In such conditions, soil amendment techniques have been proved beneficial. Availability of these nutrients in in soil is regulated by soil pH; therefore, special attention should be given to pH of the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad W, Zia MH, Malhi SS, Niaz A, Saifullah (2012) Boron deficiency in soils and crops: a review, crop plant. In: Goyal A (ed.), InTech. ISBN: 978-953-51-0527-5. Available from: http://www.intechopen.com/books/crop-plant/boron-deficiency-in-soils-and-crops-a-review

  • Aitkenhead JA, McDowell WH (2000) Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Glob Biogeochem Cycles 14(1):127–138

    Article  CAS  Google Scholar 

  • Alloway BJ (2004) In zinc in soil and crop nutrition, vol 2. International Zinc Association, Brussels, pp 32–34

    Google Scholar 

  • Atkin OK (1996) Reassessing the nitrogen relations of arctic plants: a mini-review. Plant Cell Environ 19:695–704

    Article  Google Scholar 

  • Baath E (1992) Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation. Soil Biol Biochem 24:1167–1172

    Article  CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability. A mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • BassiriRad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • Behera SK, Shukla AK (2015) Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degrad Dev 26:71–79

    Article  Google Scholar 

  • Berendse F (1990) Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. J Ecol 78:413–427

    Article  Google Scholar 

  • Bittner F (2014) Molybdenum metabolism in plants and crosstalk to iron. Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany, Mini Review Article

    Google Scholar 

  • Bobbink R (1992) Critical loads for nitrogen eutrophication of terrestrial and wetland ecosystems based upon changes in vegetation and fauna. In: Grennfelt P, Thornelof R (eds) Critical loads for nitrogen. Nord Miljrapport 41, Nordic Council of Ministers, Copenhagen, pp 111–159

    Google Scholar 

  • Boeye D, Verhagen B, Van HV, Verheyen RF (1997) Nutrient limitation in species-rich lowland fens. J Veg Sci 8:415–424

    Article  Google Scholar 

  • Boone RD, Naddelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Brown PH (2007) Nickel. In: Barkerand AV, Pilbean DJ (eds) Handbook of plant nutrition. CRC Taylor and Francis, NewYork, pp 395–402

    Google Scholar 

  • Chapin FS III, Shaver GR, Kedrowski RA (1986) Environmental controls over carbon, nitrogen and phosphorus chemical fractions in Eriophorum vaginatum L. in Alaskan tussock tundra. J Ecol 74:167–195

    Article  CAS  Google Scholar 

  • Clark RB (1982) Plant response to mineral element toxicity and deficiency. In: Christiansen MN, Lewis CF (eds) Breeding plants for less favorable environments. Wiley, New York, pp 71–142

    Google Scholar 

  • Clark RB, Baligar VC (2000) Acidic and alkaline soil constraints on plant mineral nutrition. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker Inc, New York, pp 133–177

    Google Scholar 

  • Clarke SM, Eaton-Rye JJ (2000) Amino acid deletions in loop C of the chlorophyll a-binding protein CP47 alter the chloride requirement and/or prevent the assembly of photosystem II. Plant Mol Biol 44:591–601

    Article  CAS  PubMed  Google Scholar 

  • Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Glob Biogeochem Cycles 5:319–334

    Article  CAS  Google Scholar 

  • Crill PM, Bartlett KB, Hariss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W (1988) Methane flux from Minnesota peatlands. Global Biogeochem Cycl 2:371–384

    Article  CAS  Google Scholar 

  • Dang HR, Li Y, Sun X, Zhang LY (2010) Absorption, accumulation and distribution of zinc in highly-yielding winter wheat. Agric Sci China 9(7):965–973

    Article  CAS  Google Scholar 

  • Deng Q, Cheng X, Zhou G, Liu J, Liu S, Zhang Q, Zhang D (2013) Seasonal responses of soil respiration to elevated CO2 and N addition in young subtropical forest ecosystems in young subtropical forest ecosystems in southern China. Ecol Eng 61:65–73

    Article  Google Scholar 

  • Denison RF, Kiers ET (2005) Sustainable crop nutrition: constraints and opportunities. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, pp 242–286

    Google Scholar 

  • DiTomasso A, Aarssen LW (1989) Resource manipulations in natural vegetation: a review. Vegetatio 84:9–29

    Article  Google Scholar 

  • Epstein E (1965) Mineral metabolism. In: Bonner J, Varner JE (eds) Plant biochemistry. Academic Press, London, pp 438–466

    Chapter  Google Scholar 

  • Fixen PE (2005) Decision support systems in integrated crop nutrient management. In: Proceedings no. 569. International Fertilizer Society, New York

    Google Scholar 

  • George TS, French AS, Brown LK, Karley AJ, White PJ, Ramsay L, Daniell TJ (2014) Genotypic variation in the ability of landraces and commercial cereal varieties to avoid manganese deficiency in soils with limited manganese availability: is there a role for root-exuded phytases ? Physiol Plant 151:243–256

    Article  CAS  PubMed  Google Scholar 

  • Gherardi MJ, Rengel Z (2004) The effect of manganese supply on exudation of carboxylates by roots of lucerne (Medicago sativa). Plant Soil 260:271–282

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gupta UC (1978) Soil and plant factors affecting molybdenum uptake by plants. In: Gupta UC (ed) Molybdenum in agriculture. Cambridge University Press, Cambridge, pp 71–91

    Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    Article  CAS  Google Scholar 

  • Hantschel RE, Kamp T, Beese F (1995) Increasing soil temperature to study global warming effects on the soil nitrogen cycle in agroecosystems. J Biogeogr 22:375–380

    Article  Google Scholar 

  • Harling H, Czaja I, Schell J, Walden R (1997) A plant cation chloride co-transporter promoting auxin-independent tobacco protoplast division. EMBO J 16:5855–5866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harte J, Shaw MR (1995) Shifting dominance within a montane vegetation community: results from a climate-warming experiment. Science 267:876–880

    Article  CAS  PubMed  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Article  Google Scholar 

  • Horst WJ (1988) The physiology of Mn toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, Dordrecht, pp 175–188

    Chapter  Google Scholar 

  • Howarth RW (1988) Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst 19:89–110

    Article  Google Scholar 

  • Hunt HW, Stewart JB, Cole CV (1983) A conceptual model for interactions of carbon, nitrogen, phosphorus, and sulphur in grasslands. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. Wiley, New York, pp 303–326

    Google Scholar 

  • Hussain MB, Azam AS, Hina S, Farooq MA, Ali B (2013) Morphological, physiological and biochemical responses of plants to nickel stress: a review. Afr J Agric Res 8:1596–1602. https://doi.org/10.5897/AJAR12.407

    Article  CAS  Google Scholar 

  • Imtiaz M (1999) Zn deficiency in cereals. PhD thesis. Reading University, U.K

    Google Scholar 

  • Ineson P, Benham DG, Poskitt J, Harrison AF, Taylor K, Woods C (1998) Effects of climate change on nitrogen dynamics in upland soils. 2. A soil warming study. Glob Chang Biol 4:153–161

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (1996) Climate change 1995: the science of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jamieson N, Barraclough D, Unkovich M, Monaghan R (1998) Soil N dynamics in a natural calcareous grassland under a changing climate. Biol Fertil Soils 27:267–273

    Article  Google Scholar 

  • Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a scots pine forest. V. Can J Bot 63:1008–1016

    Article  Google Scholar 

  • Jiang W, Yang ZF, Yu T, Hou QY, Zhong C, Zheng GD, Yang ZQ, Li J (2015) Evaluation of the potential effects of soil properties on molybdenum availability in soil and its risk estimation in paddy rice. J Soils Sediments 15:1520–1530

    Article  CAS  Google Scholar 

  • Johnson LC, Shaver GR, Giblin AE, Nadelhoffer KJ, Rastetter ER, Laundre JA, Murray GL (1996) Effects of drainage and temperature on carbon balance of tussock tundra microcosms. Oecologia 108:737–774

    Article  CAS  PubMed  Google Scholar 

  • Joslin JD, Wolfe MH (1993) Temperature increase accelerates nitrate release from high elevation red spruce soils. Can J For Res 23:756–759

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton/London/New York/Washington D.C

    Google Scholar 

  • Kaiser BN, Gridley KL, Ngaire BJ, Phillips T, Tyerman SD (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754. https://doi.org/10.1093/aob/mci226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariuki SK, Schroder JL, Zhang HL, Hanks T, McGrath JM, Payton ME (2010) Temporal variability of soil property dynamics in a grazed pasture. Commun Soil Sci Plant Anal 41:27442754

    Article  CAS  Google Scholar 

  • Karl TR, Knight RW, Baker B (2000) The record breaking global temperature of 1997 and 1998: evidence for an increase in the rate of global warming? Geophys Res Lett 27:719

    Article  Google Scholar 

  • Keilland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373–2383

    Article  Google Scholar 

  • Khabaz-Saberi H, Rengel Z, Wilson R, Setter TL (2010) Variation for tolerance to high concentration of ferrous iron (Fe2+) in Australian hexaploid wheat. Euphytica 172:275–283

    Article  CAS  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass AM (1997) Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59–61

    Article  CAS  Google Scholar 

  • Kumchai J, Huang JZ, Lee CY, Chen FC, Chin SW (2013) Proline partially overcomes excess molybdenum toxicity in cabbage seedlings grown in vitro. Genet Mol Res 12:5589–5601. https://doi.org/10.4238/2013.November.18.8

    Article  CAS  PubMed  Google Scholar 

  • Loomis RS, Connor DJ (1992) Crop ecology: productivity and Management in Agricultural Systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lozano-Garcia B, Parras-Alcantara L (2013) Land use and management effects on carbon and nitrogen in Mediterranean Cambisols. Agric Ecosyst Environ 179:208–214

    Article  Google Scholar 

  • Lukewille A, Wright RF (1997) Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Glob Chang Biol 3:13–21

    Article  Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci Soc Am J 59:233–240

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  • Malhi SS, McGrill WB, Nyborg N (1990) Nitrate losses in soils: effects of temperature, moisture, and substrate concentration. Soil Biol Biochem 22:917–927

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis - model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • McHale PJ, Mitchell MJ, Bowles FP (1998) Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Can J For Res 28:1365–1372

    Article  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472

    Article  CAS  Google Scholar 

  • Moody PW, Aitken RL, Dickson T (1998) Field amelioration of acidic soils in south-east Queensland: III. Relationships of maize yield response to lime and unamended soil properties. Aust J Agric Res 49:649–656

    Article  CAS  Google Scholar 

  • Mora ML, Rosas A, Ribera A, Rengel Z (2009) Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant Soil 320:79–89

    Article  CAS  Google Scholar 

  • Nolan BT, Stoner JD (2000) Nutrients in groundwater of the center conterminous United States 1992–1995. Environ Sci Technol 34:1156–1165

    Article  CAS  Google Scholar 

  • Novoa R, Loomis RS (1981) Nitrogen and plant production. Plant Soil 58:177–204

    Article  CAS  Google Scholar 

  • Oh SH, Cho SW, Kwon TH, Yang MS (1996) Purification and characterization of phytoferritin. J Biochem Mol Biol 29:540–544

    CAS  Google Scholar 

  • Olsen LI, Palmgren MG (2014) Many rivers to cross: the journey of zinc from soil to seed. Front Plant Sci 5:30

    PubMed  PubMed Central  Google Scholar 

  • Pan Y, Koopmans GF, Bonten LTC, Song J, Luo Y, Temminghoff EJM, Comans RNJ (2014) Influence of pH on the redox chemistry of metal hydroxides and organic matter in paddy soils. J Soils Sediments 14:1713–1726

    Article  CAS  Google Scholar 

  • Peterjohn WT, Melillo JM, Bowles ST (1993) Soil warming and trace gas fluxes: experimental design and preliminary flux results. Oecologia 93:18–24

    Article  PubMed  Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles ST, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625

    Article  Google Scholar 

  • Polacco JC, Mazzafera P, Tezotto T (2013) Nickel and urease in plants: still many knowledge gaps. Plant Sci 19:79–90. https://doi.org/10.1016/j.plantsci.2012.10.010

    Article  CAS  Google Scholar 

  • Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:10–11

    Article  Google Scholar 

  • Raab TK, Lipson DA, Monson RK (1998) Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80(7):2408–2419

    Article  Google Scholar 

  • Ragsdale SW (1998) Nickel biochemistry. Curr Opin Chem Biol 2:208–215. https://doi.org/10.1016/S1367-5931(98)80062-8

    Article  CAS  PubMed  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44:81–89

    Article  Google Scholar 

  • Ranade–Malvi U (2011) Interaction of micronutrients with major nutrients with special reference to potassium. Institute for Micronutrient Technology, Pune. Karnataka J Agric Sci 24(1):106–109

    Google Scholar 

  • Rengel Z (2000) Uptake and transport of manganese in plants. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 57–87

    Google Scholar 

  • Rengel Z (2002) Role of pH in availability of ions in soil. In: Rengel Z (ed) Handbook of plant Growth. pH as a master variable in plant growth. Marcel Dekker, New York, pp 323–350

    Chapter  Google Scholar 

  • Rengel Z (2015) Availability of Mn, Zn and Fe in the rhizosphere. Soil science and plant nutrition. J Soil Sci Plant Nutr 2015 15(2):397–409

    Google Scholar 

  • Riley MM, Robson AD, Gartrell JW, Jeffery RC (1987) The absence of leaching of molybdenum in acidic soils from Western Australia. Aust J Soil Res 25:179–184

    Article  CAS  Google Scholar 

  • Rind D (1999) Complexity and climate. Science 284:105–107

    Article  CAS  PubMed  Google Scholar 

  • Robinson CH, Wookey PA, Parsons AN, Potter JA, Callaghan TV, Lee JA, Press MC, Welker JM (1995) Responses of plant litter decomposition and nitrogen mineralization to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath. Oikos 74:503–512

    Article  Google Scholar 

  • Rustad LE, Fernandez IJ (1998) Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce fir forest soil in Maine, USA. Glob Chang Biol 4:597–607

    Article  Google Scholar 

  • Rutkowska B, Szulc W, Spychaj-Fabisiak E, Pior N (2017) Prediction of molybdenum availability to plants in differentiated soil conditions. Plant Soil Environ 63:491–497

    Article  CAS  Google Scholar 

  • Saeed M, Fox RL (1977) Relation between suspension pH and Zn solubility in acid and calcareous soils. Soil Sci 124:199–204

    Article  CAS  Google Scholar 

  • Sajwan KS, Lindsay WL (1988) Effect of redox, zinc fertilisation and incubation time on DTPA-extractable zinc, iron and manganese. Commun Soil Sci Plant Anal 19:1–11

    Article  CAS  Google Scholar 

  • Sakin E, Deliboran A, Sakin ED, Aslan H (2010) Carbon and nitrogen stocks and C:N ratio of Harran plain soils. Not Sci Biol 2(4):104–110

    Article  CAS  Google Scholar 

  • Scheffer F, Schachtschabel P (2002) Textbook of soil science, vol 15. Auflage Spektrum Akademischer Verlag, Heidelberg, p 593

    Google Scholar 

  • Shaver GR, Canadell J, Chapin FS III, Gurevitch J, Harte J, Henry G, Ineson I, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882

    Article  Google Scholar 

  • Sherman GD (1957) Yearbook of agricultural, U. S. Department of Agriculture, pp 135–139

    Google Scholar 

  • Sillanpaa M (1990) Micronutrients assessment at the country level. An international study FAO. Soils Bull 63. Food and agriculture Organization of the United Nations

    Google Scholar 

  • Sims T (2000) Soil fertility evaluation. In: Sumner ME (ed) Hand book of soil science. CRC Press, Boca Raton/London/New York/Washington DC

    Google Scholar 

  • Smith KS, Balistrieri LS, Smith SS, Severson RC (1997) Distribution and mobility of molybdenum in the terrestrial environment. In: Gupta UC (ed) Molybdenum in agriculture. Cambridge University Press, Cambridge, pp 23–46

    Chapter  Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang W, Zhao W, Yin L (2015) Overexpression of the MxIRT1 gene increases iron and zinc content in rice seeds. Transgenic Res 24:109–122

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Rengel Z (2003) Role of plant cation/anion uptake ratio in soil acidification. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker, New York, pp 57–81

    Google Scholar 

  • Tilman D (1986) Nitrogen-limited growth in plants from different successional stages. Ecology 67:555–563

    Article  Google Scholar 

  • Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers, 3rd edn. Collier Macmillan Publication, London/New York

    Google Scholar 

  • Tisdale SL, Nelson WL, Beaten JD (1984) Zinc in soil fertility and fertilizers, 4th edn. Macmillan Publishing Company, New York, pp 382–391

    Google Scholar 

  • University of Western Australia, 35 Stirling Highway, Perth WA 6000, Australia

    Google Scholar 

  • Van Cleve K, Oechel WC, Hom JL (1990) Response of black spruce (Picea mariana) ecosystems to soil temperature modifications in interior Alaska. Can J For Res 20:1530–1535

    Article  Google Scholar 

  • Vankatakrishnan SS, Sudlayandy RS, Savariappan AR (2003) Assessing in vitro solubilization potential of different zinc solubilizing Bacteria (ZSB) isolates. Braz J Microbiol 34:121–125

    Article  Google Scholar 

  • Vaz Patto MC, Amarowicz R, Aryee ANA, Boye JI, Chung H, Martin-Cabrejas MA, Domoney C (2015) Achievements and challenges in improving the nutritional quality of food legumes. Crit Rev Plant Sci 34:105–143

    Article  CAS  Google Scholar 

  • Veerkamp MT, Kuiper PJC (1982) The uptake of potassium by Carex species from swamp habitats varying from oligotrophic to eutrophic. Physiol Plant 55:237–241

    Article  CAS  Google Scholar 

  • Viets FG Jr (1962) U. S. Department of Agriculture, Fort Collins, Colo. Chem Availab Micronutr Soils 10(3)

    Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802404

    Article  Google Scholar 

  • Warren-Wilson J (1957) Arctic plant growth. Adv Sci 13:383–388

    Google Scholar 

  • Welch RM (2002) The impact of mineral nutrients in food crops on global human health. Plant Soil 247:83–90

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie RJ, MacKenzie AF, Lou ZJ (1993) Causal modeling pH and phosphate effects on molybdate sorption in three temperate soils. Soil Sci 155:385–397

    Article  CAS  Google Scholar 

  • Xu N, Braida W, Christodoulatos C, Chen JP (2013) A review of molybdenum adsorption in soils/bed sediments: speciation, mechanism, and model applications. Soil Sediment Contam Int J 22:912–929

    Article  CAS  Google Scholar 

  • Yang YH, Fang JY, Guo DL, Ji CJ (2010) Vertical patterns of soil carbon, nitrogen and carbon: nitrogen stoichiometry in Tibetan grasslands. Biogeosci Discuss 7:1–24

    Article  CAS  Google Scholar 

  • Zhang HB, Lou YM, Wong MH, Zhao QG, Zhang GL (2007) Soil organic carbon storage and change with reduction in agricultural activities in Hong Kong. Geoderma 139:412–419

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastav, P. et al. (2020). Role of Nutrients in Plant Growth and Development. In: Naeem, M., Ansari, A., Gill, S. (eds) Contaminants in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_2

Download citation

Publish with us

Policies and ethics