Skip to main content

Part of the book series: Biologically-Inspired Systems ((BISY,volume 16))

  • 295 Accesses

Abstract

Myrmecochory or plant seed dispersal by ants is a widely spread phenomenon. Seeds of such plants bear specialised lipid-rich appendages, elaiosomes, for attracting ants. Ant workers collect the seeds and usually carry them to their nests. The ant species complex in the ecosystem is continuously changing in time and space, and the question arises about the effect of the spatial distribution of different ant species in the ecosystem on the number and distribution of myrmecochorous plants with different dispersal strategies. In this chapter, we model the population dynamics of two myrmecochorous plants having various dispersal strategies in an ecosystem with two ant species differing in their seed preferences, colony territory size, and location of their waste piles. We find a correlation between the number of nests of different ant species and the stability of the ecosystem. In particular, if one ant species would partially or totally disappear from the system, this could cause dramatic changes in the plant populations as well. Another example treated in this chapter deals with animal aggregations, which are especially common in insects. The aggregations may result from an uneven distribution of resources or because an attraction of individuals to each other may be more efficient in defending the group against predators in general and each member of the group in particular. Tree trunks and other cylindrical objects, where aggregated insects live, represent a specific environment for predator-prey interactions, which is fundamentally different from the planar one. For a better understanding of the predator-prey interaction in a cylindrical space, we applied a numerical model that allows testing the effect of interactions between predator and aggregated prey on the plane and on the cylinder, taking into consideration different abilities of predators to visually detect the prey in these two types of space. It is shown that the aggregation in conjunction with a specific environment may bring additional advantages for the prey. When one prey subgroup aggregates on the other side of the tree trunk and becomes invisible for the predator, it will survive with a higher probability. After all, the predator moving along one side of the tree will finally loose the major group of the prey completely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcock J (1982) Natural selection and communication among bark beetles. Fla Entomol 65:17–32

    Google Scholar 

  • Aukema BH, Raffa KF (2004) Does aggregation benefit bark beetles by diluting predation? Links between a group-colonisation strategy and the absence of emergent multiple predator effects. Ecol Entomol 29:129–138

    Google Scholar 

  • Beattie AJ (1983) Distribution of ant-dispersed plants. Sonderbl Naturwiss Ver Hamburg 7:249–270

    Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant-plant mutualisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Beattie AJ, Culver DC (1981) The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology 62:107–115

    Google Scholar 

  • Beattie A, Lyons N (1975) Seed dispersal in Viola: adaptations and strategies. Am J Bot 62:714–722

    Google Scholar 

  • Bengtsson J (2008) Aggregation in non-social insects: an evolutionary analysis. Introductory paper at the Faculty of Landscape Planning, Horticulture and Agricultural Science, Swedish University of Agricultural Sciences, Alnarp, Sweden, vol 2, pp 1–18

    Google Scholar 

  • Berg RY (1966) Seed dispersal of Dendromecon: its ecologic, evolutionary, and taxonomic significance. Am J Bot 53:61–73

    Google Scholar 

  • Bond WJ, Stock WD (1989) The costs of leaving home: ants disperse myrmecochorous seeds to low nutrient sites. Oecologia 81:412–417

    CAS  PubMed  Google Scholar 

  • Bresinsky A (1963) Bau, Entwicklungsgeschichte und Inhaltsstoffe der Elaiosomen. Studien zur myrmekochoren Verbreitung von Samen und Fruechten. Bibl Bot 126:1–54

    Google Scholar 

  • Buckley RC (1982) Ant-plant interactions: a world review. In: Buckley RC (ed) Ant-plant interactions in Australia. Dr. W. Junk, The Hague, pp 111–141

    Google Scholar 

  • Buzatto BA, Requena GS, Machado G (2009) Chemical communication in the gregarious psocid Cerastipsocus sivorii (Psocoptera: Psocidae). J Insect Behav 22(5):388–398

    Google Scholar 

  • Cocroft RB (2002) Antipredator defense as a limited resource: unequal predation risk in broods of an insect with maternal care. Behav Ecol 13(1):125–133

    Google Scholar 

  • Cuautle M, Rico-Grey V, Díaz-Castelazo C (2005) Effects of ant behaviour and extrafloral necteries presence on seed dispersal of the neotropical myrmecochore Turnera ulmifolia L. (Turneraceae), in a sand dune matorral. Biol J Linn Soc 86:67–77

    Google Scholar 

  • Culver D, Beattie A (1978) Myrmecochory in Viola: dynamics of seed-ant interactions in some West Virginia species. J Ecol 66:53–72

    Google Scholar 

  • Culver D, Beattie A (1980) The fate of Viola seeds dispersed by ants. Am J Bot 67:710–714

    Google Scholar 

  • Davidson DW, Morton SR (1981a) Competition for dispersal in ant-dispersed plants. Science 213:1259–1261

    CAS  PubMed  Google Scholar 

  • Davidson DW, Morton SR (1981b) Myrmecochory in some plants (F. Chenopodiaceae) of the Australian arid zone. Oecologia 50:357–366

    CAS  PubMed  Google Scholar 

  • Durieux D, Fassotte B, Deneubourg J-L, Brostaux Y, Vandereycken A, Joie E, Haubruge E, Verheggen FJ (2015) Aggregation behavior of Harmonia axyridis under non-wintering conditions. Insect Sci 22(5):670–678

    PubMed  Google Scholar 

  • Edwards W, Dunlop M, Rodgerson L (2006) The evolution of rewards: seed dispersal, seed size and elaiosome size. J Ecol 94:687–694

    Google Scholar 

  • Filippov AE, Guillermo-Ferreira R, Gorb SN (2019) “Cylindrical worlds” in biology: does the aggregation strategy give a selective advantage? Biosystems 175:39–46

    CAS  PubMed  Google Scholar 

  • Fischer R, Richter A, Hadacek F, Mayer V (2008) Chemical differences between seeds and elaiosomes indicate an adaptation to nutritional needs of ants. Oecologia 155:539–547

    PubMed  Google Scholar 

  • Foster WA, Treherne JE (1980) Feeding, predation and aggregation behaviour in a marine insect, Halobates robustus barber (Hemiptera: Gerridae), in the Galapagos Islands. Proc Roy Soc B 209:539–553

    Google Scholar 

  • Garrido JL, Rey PJ, Cerda X, Herrera CM (2002) Geographical variation in diaspore traits of an ant-dispersed plant (Helleborus foetidus): are ant community composition and diaspore traits correlated? J Ecol 90:446–455

    Google Scholar 

  • Giladi I (2006) Choosing benefits or partners: a review of the evidence for the evolution of myrmecochory. Oikos 112:481–492

    Google Scholar 

  • Gómez C, Espadaler X (1998) Myrmecochorous dispersal distances: a world survey. J Biogeogr 25:573–580

    Google Scholar 

  • Gorb O (1998) Seed morphology and seed dispersal in two Corydalis species. Ukrainian Bot J 55:62–66

    Google Scholar 

  • Gorb SN, Gorb EV (1995) Removal rates of seeds of five myrmecochorous plants by the ant Formica polyctena (Hymenoptera: Formicidae). Oikos 73:367–374

    Google Scholar 

  • Gorb SN, Gorb EV (1999a) Effects of ant species composition on seed removal in deciduous forest in Eastern Europe. Oikos 84:110–118

    Google Scholar 

  • Gorb SN, Gorb EV (1999b) Dropping rates of elaiosome-bearing during transport by ants (Formica polyctena Foerst.): implications for distance dispersal. Acta Oecol 20:47–53

    Google Scholar 

  • Gorb E, Gorb S (2000) Effects of seed aggregation on the removal rates of elaiosome-bearing Chelidonium majus and Viola odorata seeds carried by Formica polyctena ants. Ecol Res 15:187–192

    Google Scholar 

  • Gorb E, Gorb S (2003) Seed dispersal by ants in a deciduous forest ecosystem. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gorb SN, Gorb EV, Puntilla P (2000) Effects of redispersal of seeds by ants on the vegetation pattern in a deciduous forest: a case study. Acta Oecol 21:293–301

    Google Scholar 

  • Gorb EV, Filippov AE, Gorb SN (2013) Long-term ant-species-dependent dynamics of a myrmecochorous plant community. Arthr-Plant Interact 7(3):277–286

    Google Scholar 

  • Handegard NO, Boswell KM, Ioannou CC, Leblanc SP, Tjøstheim DB, Couzin ID (2012) The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr Biol 22:1213–1217

    CAS  PubMed  Google Scholar 

  • Handel SN, Fisch B, Schatz GE (1981) Ants disperse a majority of herbs in the Mesic forest community in New York state. Bull Torrey Bot Club 108:430–437

    Google Scholar 

  • Hassell MP, May RM (1974) Aggregation of predators and insect parasites and its effect on stability. J Anim Ecol 43(2):567–594

    Google Scholar 

  • Hassell MP, Varley GC (1969) New inductive population model for insect parasites and its bearing on biological control. Nature 223:1133–1137

    CAS  PubMed  Google Scholar 

  • Higashi S, Tsuyuzaki S, Ohara M, Ito F (1989) Adaptive advantages of ant-dispersed seeds in the myrmecochorous plant Trillium tschonoskii (Liliaceae). Oikos 54:383–394

    Google Scholar 

  • Hodges RJ, Birkinshaw LA, Farman DI, Hall DR (2002) Intermale variation in aggregation pheromone release in Prostephanus truncatus. J Chem Ecol 28:1665–1674

    CAS  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Horvitz CC, Schemske DW (1986) Seed dispersal of a neotropical myrmecochore: variation in removal rates and dispersal distance. Biotropica 18:319–323

    Google Scholar 

  • Hughes L, Westoby M (1990) Removal rates of seeds adapted for dispersal by ants. Ecology 71:138–148

    Google Scholar 

  • Hughes L, Westoby M (1992) Fate of seeds adapted for dispersal by ants in Australian sclerophyll vegetation. Ecology 73:1285–1299

    Google Scholar 

  • Johannesen A, Dunn AM, Morrell LJ (2014) Prey aggregation is an effective olfactory predator avoidance strategy. Peer J 2:e408

    PubMed  Google Scholar 

  • Keeler KH (1989) Ant-plant interactions. In: Abrahamson WG (ed) Plant-animal interactions. McGraw-Hill, New York, pp 207–242

    Google Scholar 

  • Kidd NAC (1982) Predator avoidance as a result of aggregation in the Grey pine aphid, Schizolachnus pineti. J Animal Ecol 51:397–412

    Google Scholar 

  • Kjellsson G (1985) Seed fate in a population of Carex pilulifera L. I Seed dispersal and ant seed mutualism. Oecologia 67:416–423

    PubMed  Google Scholar 

  • Klein M, Ladd T, Lawrence K (1973) Simultaneous exposure of phenethyl propionate-eugenol (7:3) and virgin female japanese beetle as a lure. J Econ Entomol 66:373–374

    CAS  Google Scholar 

  • Lanza J, Schmitt MA, Awad AB (1992) Comparative chemistry of elaiosomes of 3 species of Trillium. J Chem Ecol 18:209–221

    CAS  PubMed  Google Scholar 

  • Lengyel S, Gove AD, Latimer AM, Majer JD, Dunn RR (2009) Ants sow the seeds of global diversification in flowering plants. PLoS One 4(5):e5480

    PubMed  PubMed Central  Google Scholar 

  • Lockwood JA, Story RN (1985) Bifunctional pheromone in the first instar of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae): its characterization and interaction with other stimuli. Ann Entomol Soc Am 78:474–479

    CAS  Google Scholar 

  • Lorenzo Figueiras AN, Lazzari CR (1998) Aggregation behaviour and interspecific responses in three species of Triatominae. Mem Inst Oswaldo Cruz 93(1):133–137

    CAS  PubMed  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Mark S, Olesen JM (1996) Importance of elaiosome size to removal of ant-dispersed seeds. Oecologia 107:95–101

    PubMed  Google Scholar 

  • Mayer V, Ölzant S, Fischer RC (2005) Myrmecochorous seed dispersal in temperate regions. In: Forget P.-M, Lambert JE, Hulme PE, Vander Wall, SB (eds) Seed fate: predation, dispersal and seedling establishment. CABI Publishing, Wallingford, 176–195

    Google Scholar 

  • Miller RC (1922) The significance of the gregarious habit. Ecology 3:122–126

    Google Scholar 

  • Minoli SA, Baraballe S, Lorenzo Figueiras AN (2007) Daily rhythm of aggregation in the haematophagous bug Triatoma infestans (Heteroptera: Reduviidae). Mem Inst Oswaldo Cruz 102(4):449–454

    CAS  PubMed  Google Scholar 

  • Morrell LJ, James R (2007) Mechanisms for aggregation in animals: rule success depends on ecological variables. Behav Ecol 19:193–201

    Google Scholar 

  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants, and consequences for recruitment. Trends Ecol Evol 15:278–285

    CAS  PubMed  Google Scholar 

  • Ness JHJ, Bronstein L, Andersen AN, Holland JN (2004) Ant body size predicts the dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology 85:1244–1250

    Google Scholar 

  • New TR, Collins NM (1987) “Herd-grazing” in tropical Psocoptera. Entomol Monthl Mag 123:229–230

    Google Scholar 

  • Nicholson AJ, Bailey VA (1935) The balance of animal populations. Part I. Proc Zool Soc Lond B 3:551–598

    Google Scholar 

  • O’Ceallachain DP, Ryan MF (1977) Production and perception of pheromones by the beetle Tribolium confusum. J Insect Physiol 23:1303–1309

    Google Scholar 

  • Oostermejer JGB (1989) Myrmecochory in Polygala vulgaris L., Luzula campestris (L.) DC and Viola curtisii Forster in a Dutch dune area. Oecologia 78:302–311

    Google Scholar 

  • Poland TM, Borden JH (1997) Attraction of a bark beetle predator, Thanasimus undatulus (Coleoptera: Cleridae), to pheromones of the spruce beetles and two secondary bark beetles (Coleoptera: Scolytidae). J Entomol Soc Br Columbia 94:35–41

    Google Scholar 

  • Pulliam HR (1973) On the advantages of flocking. J Theor Biol 38:419–422

    CAS  PubMed  Google Scholar 

  • Raffa KF (2001) Mixed messages across multiple trophic levels: the ecology of bark beetle chemical communication systems. Chemoecology 11:49–65

    CAS  Google Scholar 

  • Requena GS, Buzatto BA, Machado G (2007) Habitat use, phenology, and gregariousness of the Neotropical psocopteran Cerastipsocus sivorii (Psocoptera: Psocidae). Sociobiology 49(2):1–19

    Google Scholar 

  • Rico-Gray V, Oliveira PS (2007) The ecology and evolution of ant-plant interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Riipi M, Alatalo RV, Lindstrom L, Mappes J (2001) Multiple benefits of gregariousness cover detectability costs in aposematic aggregations. Nature 413:512–514

    CAS  PubMed  Google Scholar 

  • Ruxton GD, Sherratt TN (2006) Aggregation, defence and warning signals: the evolutionary relationship. Proc Roy Soc B 273:2417–2424

    Google Scholar 

  • Schellinck J, White T (2011) A review of attraction and repulsion models of aggregation: methods, findings and a discussion of model validation. Ecol Model 222:1897–1911

    Google Scholar 

  • Schlyter F, Birgesson G (1999) Forest beetles. In: Hardie J, Minks AK (eds) Pheromones in non-Lepidopteran insects associated with agricultural plans. CAB International, Oxford

    Google Scholar 

  • Sernander R (1906) Entwurf einer Monographie der europäischen Myrmekochoren. K Sven Vetenskapsacad Handl 41:1–410

    Google Scholar 

  • Smallwood J (1982) Nest relocation in ants. Insect Soc 29:138–147

    Google Scholar 

  • Soukup VG, Holman RT (1987) Fatty acids of seeds of North American pedicillate Trillium-species. Phytochemistry 26:105–108

    Google Scholar 

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405

    CAS  PubMed  Google Scholar 

  • Strömbom D, Mann RP, Wilson AM, Hailes S, Morton AJ, Sumpter DJT, King AJ (2014) Solving the shepherding problem: heuristics for herding autonomous, interacting agents. J R Soc Interface 11:20140719

    PubMed  PubMed Central  Google Scholar 

  • Thompson WR (1924) La theorie mathematique de l’action des parasites entomophages et le facteur du hasard. Ann Fae Sci Marseille 2:69–89

    Google Scholar 

  • Thompson SN (1973) A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp Biochem Physiol A 45:467–482

    CAS  Google Scholar 

  • Treherne JE, Foster WA (1980) The effects of group size on predator avoidance in a marine insect. Anim Behav 28:1119–1122

    Google Scholar 

  • Treherne JE, Foster WA (1981) Group transmission of predator avoidance in a marine insect: the Trafalgar effect. Anim Behav 29:911–917

    Google Scholar 

  • Treherne JE, Foster WA (1982) Group size and anti-predator strategies in a marine insect. Anim Behav 32:536–542

    Google Scholar 

  • Turchin P, Kareiva P (1989) Aggregation in Aphis varians: an effective strategy for reducing predation risk. Ecology 70:1008–1016

    Google Scholar 

  • Ulbrich E (1928) Biologie der Fruechte und Samen (Karpobiologie). Springer, Berlin

    Google Scholar 

  • Vite JP, Pitman GB (1969) Aggregation behaviour of Dendroctonus brevicomis in response to synthetic pheromones. J Insect Physiol 15:1617–1622

    CAS  Google Scholar 

  • Volterra V (1928) Variations and fluctuations of the number of individuals in animal species living together. J Cons Perm Int Explor Mer 3:3–51

    Google Scholar 

  • Watt KEF (1959) A mathematical model for the effect of densities of attacked and attacking species on the number attacked. Can Ent 91:129–144

    Google Scholar 

  • Watt PJ, Nottimgham SF, Young S (1997) Toad tadpole aggregation behaviour: evidence for a predator avoidance function. Anim Behav 54:865–872

    CAS  PubMed  Google Scholar 

  • Wertheim B, Vet LEM, Dicke M (2003) Increased risk of parasitism as ecological costs of using aggregation pheromones: laboratory and field study of Drosophila-Leptopilina interaction. Oikos 100:269–282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

9.1 Supplementary Electronic Material (S)

(MP4 1098 kb)

(MP4 957 kb)

(MP4 3168 kb)

(MP4 3636 kb)

(MP4 8777 kb)

(MP4 15535 kb)

(MP4 11016 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, A.E., Gorb, S.N. (2020). Ecology and Evolution. In: Combined Discrete and Continual Approaches in Biological Modelling . Biologically-Inspired Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-41528-0_9

Download citation

Publish with us

Policies and ethics