Skip to main content

Mechanical Interlocking of Biological Fasteners

  • Chapter
  • First Online:
Combined Discrete and Continual Approaches in Biological Modelling

Part of the book series: Biologically-Inspired Systems ((BISY,volume 16))

  • 350 Accesses

Abstract

Microstructures responsible for temporary arresting of contacting surfaces are widely distributed on surfaces in different organisms. They have different density of outgrowths and surprisingly not ideal distribution patterns. This is why they are often called probabilistic fasteners. Their size, shape and the density of their outgrowths do not correspond exactly to each other and interact by generating strong resistance force against acting force without precise positioning of both surfaces. For example, this kind of attachment is of importance for functioning of some biomechanical systems in insects. One can suggest that different structure of the interlocking devices is optimized by natural selection to get appropriate mechanical arrest. In this chapter, we simulate such a system numerically, both in the frames of continuous and discrete dynamical models. The feathers of modern birds are waterproof, breathable, lightweight constructions combining thermo-isolation, rigidity and flexibility due to the feather’s ability to hold its parts together by a specific pattern of hooklets. The feather vane can be separated into two parts by pulling neighboring barbs apart, but original state can be re-established easily by lightly stroking through the feather. Hooklets responsible for holding vane barbs together are not damaged by multiple zipping and unzipping cycles. A model is developed which reproduces zipping and unzipping behavior in feathers similar to those observed in biomechanical experiments performed on real bird feathers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (1986) Flight range and significance of wing hooks in Megachile femorata Smith (Hymenoptera, Megachilidae). J Anim Morphol Physiol 3:107–112

    Google Scholar 

  • Alibardi L (2005) Fine structure of juvenile feathers of the zebrafinch in relation to the evolution and diversification of pennaceous feathers. J Submicrosc Cytol Pathol 37:323–343

    CAS  PubMed  Google Scholar 

  • Alibardi L (2007) Cell organisation of barb ridges in regenerating feathers of the quail: implications of the elongation of barb ridges for the evolution and diversification of feathers. Acta Zool 88:101–117

    Article  Google Scholar 

  • Alibardi L, Knapp LW, Sawyer RH (2006) Beta-keratin localization in developing alligator scales and feathers in relation to the development and evolution of feathers. J Submicrosc Cytol Pathol 38:175–192

    CAS  PubMed  Google Scholar 

  • Bonser RHC, Purslow PP (1995) The Young’s modulus of feather keratin. J Exp Biol 198:1029–1033

    CAS  PubMed  Google Scholar 

  • Carboneras C (1992) Family Anatidae (ducks, geese and swans). In: Handbook of birds of the world, V. 1: Ostrich to ducks. Lynx Edicions, Barcelona

    Google Scholar 

  • Chen PJ, Dong ZM, Zhen SN (1998) An exceptionally well-preserved theropod dinosaur from the Yixian formation of China. Nature 391:147–152

    Article  CAS  Google Scholar 

  • Clarke J (2013) Feathers before flight. Science 340:690–692

    Article  CAS  Google Scholar 

  • Dimond CC, Cabin RJ, Brooks JS (2011) Feathers, dinosaurs, and behavioral cues: defining the visual display hypothesis for the adaptive function of feathers in non-avian theropods. Bios 82:58–63

    Article  Google Scholar 

  • Durin G, Zapperi S (2000) Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys Rev Lett 84:4705–4708

    Article  CAS  Google Scholar 

  • Filippov AE, Popov VL, Gorb SN (2015) The functional significance of density and distribution of outgrowths on co-opted contact pairs in biological arresting systems. Phil Trans Roy Soc B 370:20140032

    Article  Google Scholar 

  • Gorb SN (1996) Design of insect unguitractor apparatus. J Morphol 230:219–230

    Article  Google Scholar 

  • Gorb SN (1998a) Frictional surfaces of the elytra to body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae): design of co-opted fields of microtrichia and cuticle ultrastructure. Int J Insect Morphol Embryol 27:205–225

    Article  Google Scholar 

  • Gorb SN (1998b) Functional morphology of the head-arrester system in Odonata. Zoologica 148:1–132

    Google Scholar 

  • Gorb SN (1999a) Evolution of the dragonfly head-arresting system. Proc Roy Soc Lond B 266:525–535

    Article  Google Scholar 

  • Gorb SN (1999b) Ultrastructure of the thoracic dorso-medial field (TDM) in the elytra-to-body arresting mechanism in tenebrionid beetles (Coleoptera: Tenebrionidae). J Morphol 240:101–113

    Article  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer, Dordrecht

    Google Scholar 

  • Gorb SN (2004) The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. Arthropod Struct Dev 33:201–220

    Article  Google Scholar 

  • Gorb SN, Popov VL (2002) Probabilistic fasteners with parabolic elements: biological system, artificial model and theoretical considerations. Phil Trans Roy Soc Lond A 360:211–225

    Article  CAS  Google Scholar 

  • Kovalev A, Filippov AE, Gorb SN (2014) Unzipping bird feathers. J Roy Soc Interface 11:20130988

    Article  Google Scholar 

  • Lebyodkin MA, Dunin-Barkovskij LR, Lebedkina TA (2002) Universality and scaling of unstable plastic flow. JETP Letters 76(10):612–615. Translated from Pis’ma v Zhurnal Éksperimental’noj i Teoreticheskoj Fiziki 76(10): 714–718

    Article  CAS  Google Scholar 

  • Lilienthal K, Stubenrauch M, Fischer M, Schober A (2010) Fused silica ‘glass grass’: fabrication and utilization. J Micromech Microeng 20:025017

    Article  Google Scholar 

  • Maddalena F, Percivale D, Puglisi G, Truskinovsky L (2009) Mechanics of reversible unzipping. Cont Mech Therm 21:251–268

    Article  Google Scholar 

  • Miller SA, Harley JP (1996) Zoology. Wm. C. Brown Publishers, Dubuque

    Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin

    Book  Google Scholar 

  • Niederegger N, Gorb SN, Jiao Y (2002) Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J Comp Physiol A 187:961–970

    Article  Google Scholar 

  • Pang C, Kang D, Kim T, Suh K-Y (2012a) Analysis of preload-dependent reversible mechanical interlocking using beetle-inspired wing locking device. Langmuir 28:2181–2186

    Article  CAS  Google Scholar 

  • Pang C, Kim SM, Rahmawan Y, Suh K-Y (2012b) Beetle-inspired bi-directional, asymmetric interlocking using geometry-tunable nanohairs. ACS Appl Mater Interfaces 4:4225–4230

    Article  CAS  Google Scholar 

  • Pang C, Kwak MK, Lee C, Jeong HE, Bae W-G, Suh K-Y (2012c) Nano meets beetles from wing to tiptoe: versatile tools for smart and reversible adhesions. Nano Today 7:496–513

    Article  CAS  Google Scholar 

  • Perez-Goodwyn PJ, Gorb SN (2004) Frictional properties of contacting surfaces in the hemelytra-hindwing locking mechanism in the bug Coreus marginatus (Heteroptera, Coreidae). J Comp Physiol A 190:575–580

    Article  CAS  Google Scholar 

  • Pettingill OS Jr (1970) Ornithology in laboratory and field, 4th edn. Burgess, Minneapolis

    Google Scholar 

  • Popov VL (2010) Contact mechanics and friction. Physical principles and applications. Springer, Berlin

    Book  Google Scholar 

  • Pugno NM (2007) Velcro® nonlinear mechanics. Appl Phys Lett 90:121918

    Article  Google Scholar 

  • Richards AG, Richards PA (1979) The cuticular protuberances of insects. Int J Insect Morphol Embryol 8:143–157

    Article  Google Scholar 

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Springer, Berlin

    Book  Google Scholar 

  • Schrott A (1986) Vergleichende Morphologie und Ultrastruktur des Cenchrus-Dornenfeldapparates bei Pflanzenwespen (Insecta: Hymenoptra, Symphyta). Ber Nat Med Verein Innsbruck 73: 159–168

    Google Scholar 

  • Sumida S, Brochu CA (2000) Phylogenetic context for the origin of feathers. Am Zool 40:486–503

    Google Scholar 

  • Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the lower cretaceous of China. Nature 484:92–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

6.1 Supplementary Electronic Material(s)

(MP4 2515 kb)

(MP4 2201 kb)

(MP4 2497 kb)

(MP4 11986 kb)

(MP4 3134 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, A.E., Gorb, S.N. (2020). Mechanical Interlocking of Biological Fasteners. In: Combined Discrete and Continual Approaches in Biological Modelling . Biologically-Inspired Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-41528-0_6

Download citation

Publish with us

Policies and ethics