Skip to main content

Part of the book series: Biologically-Inspired Systems ((BISY,volume 16))

Abstract

Biological surfaces covered with micro- and nanostructures, oriented at some angle to the plain may cause strong mechanical anisotropy. Some of them also exhibit pronounced flexibility due to the material of the supporting layer or due to flexible connecting joints. Flexible systems have a wide range of functions including the transport of particles in insect cleaning devices and the propulsion generation during slithering locomotion of snakes. In this chapter, we study the dependence of the anisotropic friction on the slope of the structures, rigidity of their joints, and sliding speed. A system of this kind is the snake skin consisting of stiff scales embedded in a flexible supporting layer. Additionally, there is also microstructure with strongly anisotropic orientation on these scales, which provides frictional anisotropy of the skin. The main function of such hierarchical anisotropic structures is to generate low sliding friction in the forward sliding direction, and high propulsive force along the substrate. Snakes are also able to dynamically adapt their friction interactions by redistributing their local pressures and changing their winding angles, when either friction anisotropy is suppressed by the low friction substrate, or when the external force displacing snake overcomes friction resistance on inclines. In order to understand these biotribology problems, we develop a set of corresponding numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal HA (2018) Surface structure and tribology of legless squamate reptiles. J Mech Behav Biomed Mater 79:354–398

    PubMed  Google Scholar 

  • Abdel-Aal HA, Vargiolu R, Zahouani H, El Mansori M (2012) Preliminary investigation of the frictional response of reptilian shed skin. Wear 290–291:51–60

    Google Scholar 

  • Alben S (2013) Optimizing snake locomotion in the plane. Proc R Soc A 469:20130236

    Google Scholar 

  • Austin AD, Browning TO (1981) A mechanism for movement of eggs along insect ovipositors. Int J Insect Morphol Embryol 10:93–108

    Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    CAS  PubMed  Google Scholar 

  • Bauer G, Klein MC, Gorb SN, Speck T, Voigt D, Gallenmüller F (2010) Always on the bright side: the climbing mechanism of Galium aparine. Proc R Soc B 278:2233–2239

    PubMed  Google Scholar 

  • Baum MJ, Heepe L, Gorb SN (2014a) Friction behavior of a microstructured polymer surface inspired by snake skin. Beilstein J Nanotechnol 5:83–97

    PubMed  PubMed Central  Google Scholar 

  • Baum MJ, Kovalev AK, Michels J, Gorb SN (2014b) Anisotropic friction of the ventral scales in the snake Lampropeltis getula californiae. Tribol Lett 54:139–150

    Google Scholar 

  • Benz MJ, Kovalev AE, Gorb SN (2012) Anisotropic frictional properties in snakes. In: Lakhtakia A, Martín-Palma RJ (eds) Bioinspiration, biomimetics, and bioreplication, Proc SPIE 8339, p 11

    Google Scholar 

  • Berthé R, Westhoff G, Bleckmann H, Gorb SN (2009) Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae). J Comp Physiol A 195:311–318

    Google Scholar 

  • Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci U S A 101:14138–14143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowden FP, Tabor D (1986) The friction and lubrication of solids. Clarendon Press, Oxford

    Google Scholar 

  • Chiasson RB, Lowe CH (1989) Ultrastructural scale patterns in Nerodia and Thamnophis. J Herpetol 23:109–118

    Google Scholar 

  • Clemente CJ, Dirks J-H, Barbero DR, Steiner U, Federle W (2009) Friction ridges in cockroach climbing pads: anisotropy of shear stress measured on transparent, microstructured substrates. J Comp Physiol A 195:805–814

    Google Scholar 

  • Conde-Boytel R, Erickson EH, Carlson SD (1989) Scanning electron microscopy of the honeybee, Apis mellifera L. (Hymenoptera: Apidae) pretarsus. Int J Insect Morphol Embryol 18:59–69

    Google Scholar 

  • Dashman T (1953) The unguitractor plate as a taxonomic tool in the Hemiptera. Ann Entomol Soc Am 46:561–578

    Google Scholar 

  • Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886

    CAS  PubMed  Google Scholar 

  • Filippov AE, Gorb SN (2013) Frictional-anisotropy-based systems in biology: structural diversity and numerical model. Sci Rep 3:1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filippov AE, Gorb SN (2016) Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures. Sci Rep 6:23539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filippov AE, Popov V (2008) Directed molecular transport in an oscillating channel with randomness. Phys Rev E 77:N211114

    Google Scholar 

  • Filippov AE, Westhoff G, Kovalev A, Gorb SN (2018) Numerical model of the slithering snake locomotion based on the friction anisotropy of the ventral skin. Tribol Lett 66:119

    Google Scholar 

  • Fleishman D, Filippov AE, Urbakh M (2004) Directed molecular transport in an oscillating symmetric channel. Phys Rev E 69:011908

    CAS  Google Scholar 

  • Gans C (1984) Slide-pushing: a transitional locomotor method of elongate squamates. Symp Zool Soc Lond 52:12–26

    Google Scholar 

  • Goel SC (1972) Notes on the structure of the unguitractor plate in Heteroptera (Hemiptera). J Entomol 46:167–173

    Google Scholar 

  • Gorb SN (1996) Design of insect unguitractor apparatus. J Morphol 230:219–230

    PubMed  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers

    Google Scholar 

  • Gorb EV, Gorb SN (2002) Contact separation force of the fruit burrs in four plant species adapted to dispersal by mechanical interlocking. Plant Physiol Biochem 40:373–381

    CAS  Google Scholar 

  • Gorb EV, Gorb SN (2009) Functional surfaces in the pitcher of the carnivorous plant Nepenthes alata: a cryo-SEM approach. In: Gorb SN (ed) Functional surfaces in biology: adhesion related systems, vol 2, pp 205–238

    Google Scholar 

  • Gorb EV, Gorb SN (2011) The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment. Beilstein J Nanotechnol 2:302–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorb SN, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B 267:1239–1244

    CAS  Google Scholar 

  • Gorb SN, Sinha M, Peressadko A, Daltorio KA, Quinn RD (2007) Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspir Biomim 2:S117–S125

    PubMed  Google Scholar 

  • Gower DJ (2003) Scale microornamentation of uropeltid snakes. J Morphol 258:249–268

    PubMed  Google Scholar 

  • Greiner C, Schäfer M (2015) Bio-inspired scale-like surface textures and their tribological properties. Bioinspir Biomim 10:044001

    PubMed  Google Scholar 

  • Hazel J, Stone M, Grace MS, Tsukruk VV (1999) Nanoscale design of snake skin for reptation locomotions via friction anisotropy. J Biomech 32:477–484

    CAS  PubMed  Google Scholar 

  • Hoge AR, Santos PS (1953) Submicroscopic structure of “stratum corneum” of snakes. Science 118:410–411

    CAS  PubMed  Google Scholar 

  • Hu DL, Nirody J, Scott T, Shelley MJ (2009) The mechanics of slithering locomotion. Proc Natl Acad Sci U S A 106:10081–10085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    PubMed  PubMed Central  Google Scholar 

  • Irish FJ, Williams EE, Seling E (1988) Scanning electron microscopy of changes in epidermal structure occurring during the shedding cycle in squamate reptiles. J Morphol 197:105–126

    PubMed  Google Scholar 

  • Jayne BC (1986) Kinematics of terrestrial snake locomotion. Copeia 22:915–927

    Google Scholar 

  • Klein M-CG, Deuschle JK, Gorb SN (2010) Material properties of the skin of the Kenyan sandboa Gongylophis colubrinus (Squamata, Boidae). J Comp Physiol A 196:659–668

    Google Scholar 

  • Liley M (1998) Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280:273–275

    CAS  PubMed  Google Scholar 

  • Maderson PFA (1972) When? Why? And how? Some speculations on the evolution of vertebrate integument. Am Zool 12:159–171

    Google Scholar 

  • Manoonpong P, Gorb S, Heepe, L (2017) Exploiting frictional anisotropy from a scale-like material for energy-efficient robot locomotion. ISBE Newsletter 6:9–10

    Google Scholar 

  • Marvi H, Hu DL (2012) Friction enhancement in concertina locomotion of snakes. J R Soc Interface 9:3067–3080

    PubMed  PubMed Central  Google Scholar 

  • Mickoleit G (1973) Über den Ovipositor der Neuropteroidea und Coleoptera und seine phylogenetische Bedeutung (Insecta, Holometabola). Z Morphol Tiere 74:37–64

    Google Scholar 

  • Mühlberger M, Rohn M, Danzberger J, Sonntag E, Rank A, Schumm L, Kirchner R, Forsich C, Gorb SN, Einwögerer B, Trappl E, Heim D, Schift H, Bergmair I (2015) UV-NIL fabricated bio-inspired inlays for injection molding to influence the friction behavior of ceramic surfaces. Microelectron Eng 141:140–144

    Google Scholar 

  • Müller HJ (1941) Über Bau und Funktion des Legeapparates der Zikaden (Homoptera Cicadina). Z Morphol Ökol Tiere 38:534–629

    Google Scholar 

  • Murphy MP, Aksak B, Sitti M (2007) Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips. J Adhes Sci Technol 21:1281–1296

    CAS  Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232

    Google Scholar 

  • Niitsuma K, Miyagawa S, Osaki S (2005) Mechanical anisotropy in cobra skin is related to body movement. Eur J Morphol 42:193–200

    PubMed  Google Scholar 

  • Picado C (1931) Epidermal microornaments of the crotalinae. Bull Antivenin Inst Am 4:104–105

    Google Scholar 

  • Price RM (1982) Dorsal snake scale microdermatoglyphics: ecological indicator or taxonimical tool? J Herpetol 16:294–306

    Google Scholar 

  • Price RM, Kelly P (1989) Microdermatoglyphics: basal patterns and transition zones. J Herpetol 23:244–261

    Google Scholar 

  • Reif W-E, Dinkelacker A (1982) Hydrodynamics of the squamation in fast swimming sharks. Neues Jahrb Geol Paläontol 164:184–187

    Google Scholar 

  • Renous S, Gasc JP, Diop A (1985) Microstructure of the tegumentary surface of the Squamata (Reptilia) in relation to their spatial position and their locomotion. Fortschr Zool 30:487–489

    Google Scholar 

  • Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, Stegmaier T, Sarsour J, Linke M, Konrad W (2012) Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface 9:1965–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherge M, Gorb SN (2001) Biological micro- and nanotribology. Springer, Berlin

    Google Scholar 

  • Schmidt CV, Gorb SN (2012) Snake scale microstructure: phylogenetic significance and functional adaptations, Zoologica. Schweizerbart Science Publisher, Stuttgart

    Google Scholar 

  • Schönitzer K (1986) Comparative morphology of the antenna cleaner in bees (Apoidea). Z Zool Syst Evolutionsforsch 24:35–51

    Google Scholar 

  • Schönitzer K, Lawitzky G (1987) A phylogenetic study of the antenna cleaner in Formicidae, Mutillidae and Tiphiidae (Insecta, Hymenoptera). Zoomorphology 107:273–285

    Google Scholar 

  • Schönitzer K, Penner M (1984) The function of the antenna cleaner of the honeybee (Apis mellifica). Apidologie 15:23–32

    Google Scholar 

  • Seifert P, Heinzeller T (1989) Mechanical, sensory and glandular structures in the tarsal unguitractor apparatus of Chironomus riparius (Diptera, Chironomidae). Zoomorphology 109:71–78

    Google Scholar 

  • Smith EL (1972) Biosystematics and morphology of symphyta. 3 External genitalia of Euura. Int J Insect Morphol Embryol 1:321–365

    Google Scholar 

  • Tramsen HT, Gorb SN, Zhang H, Manoonpong P, Dai Z, Heepe L (2018) Inversion of friction anisotropy in a bio-inspired asymmetrically structured surface. J R Soc Interface 15:1–7

    Google Scholar 

  • Wang X, Osborne MT, Alben S (2014) Optimizing snake locomotion on an inclined plane. Phys Rev E 89:012717

    Google Scholar 

  • Zheng Y, Gao X, Jiang L (2007) Directional adhesion of superhydrophobic butterfly wings. Soft Matter 3:178–182

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

5.1 Supplementary Electronic Material (S)

(MP4 198 kb)

(MP4 223 kb)

(MP4 138 kb)

(MP4 180 kb)

(MP4 956 kb)

(MP4 6321 kb)

(MP4 1037 kb)

(MP4 9582 kb)

(MP4 1921 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, A.E., Gorb, S.N. (2020). Anisotropic Friction in Biological Systems. In: Combined Discrete and Continual Approaches in Biological Modelling . Biologically-Inspired Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-41528-0_5

Download citation

Publish with us

Policies and ethics