Skip to main content

Clusterization of Biological Structures with High Aspect Ratio

  • Chapter
  • First Online:
Combined Discrete and Continual Approaches in Biological Modelling

Part of the book series: Biologically-Inspired Systems ((BISY,volume 16))

  • 305 Accesses

Abstract

In this chapter, we will concentrate ourselves on the effect of so-called clusterization, which appears in biological and biologically-inspired fibrillar adhesion systems. If the arrays of fiber-like structures are flexible enough to allow efficient contact with natural rough surfaces, after few attachment-detachment cycles, the fibers tend to adhere one to another and form clusters which are much larger than original fibers. Due to this effect, they are less flexible and form much worse contacts with rough surfaces. Prevention of the clusterization is very important for the effectiveness of both natural and artificial adhesives. It is known that the arrays of setae of real gecko or beetle are much less susceptible to this problem than artificial ones. Here we provide numerical modeling of two different solutions of this problem that were previously experimentally studied in biological systems: gradients of the fiber stiffness and spatial structure of the fibers distributed in 3D space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci U S A 100:10603–10606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–684

    CAS  PubMed  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 99:12252–12256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbakadze N, Enders S, Gorb S, Arzt E (2006) Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 209:722–730

    CAS  PubMed  Google Scholar 

  • Bhushan B, Peressadko AG, Kim TW (2006) Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion’. J Adhes Sci Technol 20:1475–1491

    CAS  Google Scholar 

  • Borodich FM, Gorb EV, Gorb SN (2010) Fracture behaviour of plant epicuticular wax crystals and its role in preventing insect attachment: a theoretical approach. Appl Phys A Mater Sci Process 100:63–71

    CAS  Google Scholar 

  • Creton C, Gorb SN (2007) Sticky feet: from animals to materials. MRS Bull 32:466–468

    Google Scholar 

  • Filippov AE, Gorb SN (2014) Spatial model of the gecko foot hair: functional significance of highly specialized non-uniform geometry. Interface Focus 5:20140065

    Google Scholar 

  • Filippov AE, Popov VL (2007a) Fractal Tomlinson model for mesoscopic friction: from microscopic velocity-dependent damping to macroscopic Coulomb friction. Phys Rev E75:027103

    Google Scholar 

  • Filippov AE, Popov VL (2007b) Flexible tissue with fibres interacting with an adhesive surface. J Phys Condens Matter 19:096012 (10pp)

    Google Scholar 

  • Filippov AE, Popov VL, Gorb SN (2011) Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. J Theor Biol 276:126–131

    PubMed  Google Scholar 

  • Fong H, Sarikaya M, White SN, Snead ML (2000) Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater Sci Eng C 7:119–128

    Google Scholar 

  • Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci U S A 101:7851–7856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463

    CAS  PubMed  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gorb SN (2008) Smooth attachment devices in insects. In: Casas J, Simpson SJ (eds) Advances in insect physiology: insect mechanics and control, vol 34. Elsevier Ltd./Academic, London, pp 81–116

    Google Scholar 

  • Gorb SN, Beutel RG (2001) Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88:530–534

    CAS  PubMed  Google Scholar 

  • Gorb SN, Filippov AE (2014) Fibrillar adhesion with no clusterisation: functional significance of material gradient along adhesive setae of insects. Beilstein J Nanotechnol 5:837–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorb SN, Beutel RG, Gorb EV, Jiao Y, Kastner V, Niederegger S, Popov VL, Scherge M, Schwarz U, Votsch W (2002) Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr Comp Biol 42:1127–1139

    PubMed  Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Z Morphol Tiere 62:307–362

    Google Scholar 

  • Hu S, Jiang H, Xia Z, Gao X (2010) Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling. ACS Appl Mater Interfaces 2:2570–2578

    CAS  PubMed  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1:2–4

    PubMed  PubMed Central  Google Scholar 

  • Hui CY, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48

    PubMed  PubMed Central  Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145

    PubMed  Google Scholar 

  • Kim TW, Bhushan B (2007) Effect of stiffness of multilevel hierarchical attachment system on adhesion enhancement. Ultramicroscopy 107:902–912

    CAS  PubMed  Google Scholar 

  • Klein M-C, Deuschle J, Gorb S (2010) Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae). J Comp Physiol A 196:659–668

    Google Scholar 

  • Landolsi F, Sun Y, Lu H, Ghorbel FH, Lou J (2010) Regular and reverse nanoscale stick-slip behavior: modeling and experiments. Appl Surf Sci 256:2577–2582

    CAS  Google Scholar 

  • Liu J, Huy CY, Jagota A, Shen L (2009) A model for static friction in a film-terminated microfibril array. J Appl Phys 106:053520

    Google Scholar 

  • Lou J, Ding F, Lu H, Goldman J, Sun Y, Yakobson BI (2008) Mesoscale reverse stick-slip nanofriction behavior of vertically aligned multiwalled carbon nanotube superlattices. Appl Phys Lett 92:203115

    Google Scholar 

  • Michels J, Gorb SN (2012) Detailed three-dimensional visualization of resilin in the exoskeleton of arthropods using confocal laser scanning microscopy. J Microsc 245:1–16

    CAS  PubMed  Google Scholar 

  • Morse PM (1929) Diatomic molecules according to the wave mechanics II. Vibrational levels. Phys Rev 34:57–64

    CAS  Google Scholar 

  • Northen MT, Turner KL (2005) A batch of fabricated dry adhesive. Nanotechnology 16:1159–1166

    CAS  Google Scholar 

  • Peisker H, Michels J, Gorb SN (2013) Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat Commun 4:1661

    PubMed  Google Scholar 

  • Perez Goodwyn P, Peressadko A, Schwarz H, Kastner V, Gorb S (2006) Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J Comp Physiol A 192:1233–1243

    Google Scholar 

  • Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614–7621

    CAS  Google Scholar 

  • Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444

    CAS  Google Scholar 

  • Popov VL, Starcevic J, Filippov AE (2007) Reconstruction of potential from dynamic experiments. Phys Rev E 75(6):066104

    CAS  Google Scholar 

  • Rizzo NW, Gardner KH, Walls DJ, Keiper-Hrynko NM, Ganzke TS, Hallahan DL (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3:441–451

    CAS  PubMed  Google Scholar 

  • Schaber CF, Heinlein T, Keeley G, Schneider JJ, Gorb SN (2015a) Tribological properties of vertically aligned carbon nanotube arrays. Carbon 94:396–404

    CAS  Google Scholar 

  • Schaber CF, Filippov AE, Heinlein T, Schneider JJ, Gorb SN (2015b) Modelling clustering of vertically aligned carbon nanotube arrays. Interface Focus 5:20150026

    PubMed  PubMed Central  Google Scholar 

  • Spinner M, Westhoff G, Gorb SN (2014) Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness. Sci Rep 4:5481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spolenak R, Gorb SN, Gao H, Arzt E (2005a) Effects of contact shape on the scaling of biological attachments. Proc R Soc Lond A 461:305–319

    Google Scholar 

  • Spolenak R, Gorb SN, Arzt E (2005b) Adhesion design maps for bio-inspired attachment systems. Acta Biomater 1:5–13

    PubMed  Google Scholar 

  • Varenberg M, Pugno NM, Gorb SN (2010) Spatulate structures in biological fibrillar adhesion. Soft Matter 6:3269–3272

    CAS  Google Scholar 

  • Vincent JFV (2002) Arthropod cuticle: a natural composite shell system. Compos Part A Appl Sci Manuf 33:1311–1315

    Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    CAS  PubMed  Google Scholar 

  • Wang RZ, Weiner S (1997) Strain-structure relations in human teeth using Moire fringes. J Biomech 31:135–141

    Google Scholar 

  • Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37:889–907

    CAS  Google Scholar 

  • Weis-Fogh T (1961) Molecular interpretation of the elasticity of resilin, a rubber-like protein. J Mol Biol 3:648–667

    CAS  Google Scholar 

  • Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 2005:3799–3801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

3.1 Supplementary Electronic Material (S)

(MP4 2921 kb)

(MP4 4854 kb)

(MP4 2266 kb)

(MP4 2045 kb)

(MP4 4857 kb)

(MP4 1037 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippov, A.E., Gorb, S.N. (2020). Clusterization of Biological Structures with High Aspect Ratio. In: Combined Discrete and Continual Approaches in Biological Modelling . Biologically-Inspired Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-41528-0_3

Download citation

Publish with us

Policies and ethics